The Centre for Healthy Brain Ageing, School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
Abstract:Existing methods for multimodal MRI segmentation with missing modalities typically assume that all MRI modalities are available during training. However, in clinical practice, some modalities may be missing due to the sequential nature of MRI acquisition, leading to performance degradation. Furthermore, retraining models to accommodate newly available modalities can be inefficient and may cause overfitting, potentially compromising previously learned knowledge. To address these challenges, we propose Replay-based Hypergraph Domain Incremental Learning (ReHyDIL) for brain tumor segmentation with missing modalities. ReHyDIL leverages Domain Incremental Learning (DIL) to enable the segmentation model to learn from newly acquired MRI modalities without forgetting previously learned information. To enhance segmentation performance across diverse patient scenarios, we introduce the Cross-Patient Hypergraph Segmentation Network (CHSNet), which utilizes hypergraphs to capture high-order associations between patients. Additionally, we incorporate Tversky-Aware Contrastive (TAC) loss to effectively mitigate information imbalance both across and within different modalities. Extensive experiments on the BraTS2019 dataset demonstrate that ReHyDIL outperforms state-of-the-art methods, achieving an improvement of over 2\% in the Dice Similarity Coefficient across various tumor regions. Our code is available at ReHyDIL.
Abstract:Multimodal pathology-genomic analysis has become increasingly prominent in cancer survival prediction. However, existing studies mainly utilize multi-instance learning to aggregate patch-level features, neglecting the information loss of contextual and hierarchical details within pathology images. Furthermore, the disparity in data granularity and dimensionality between pathology and genomics leads to a significant modality imbalance. The high spatial resolution inherent in pathology data renders it a dominant role while overshadowing genomics in multimodal integration. In this paper, we propose a multimodal survival prediction framework that incorporates hypergraph learning to effectively capture both contextual and hierarchical details from pathology images. Moreover, it employs a modality rebalance mechanism and an interactive alignment fusion strategy to dynamically reweight the contributions of the two modalities, thereby mitigating the pathology-genomics imbalance. Quantitative and qualitative experiments are conducted on five TCGA datasets, demonstrating that our model outperforms advanced methods by over 3.4\% in C-Index performance.
Abstract:With the rapid advancement of generative artificial intelligence(AI), its potential applications in higher education have attracted significant attention. This study investigated how 148 students from diverse engineering disciplines and regions across China used generative AI, focusing on its impact on their learning experience and the opportunities and challenges it poses in engineering education. Based on the surveyed data, we explored four key areas: the frequency and application scenarios of AI use among engineering students, its impact on students' learning and performance, commonly encountered challenges in using generative AI, and future prospects for its adoption in engineering education. The results showed that more than half of the participants reported a positive impact of generative AI on their learning efficiency, initiative, and creativity, with nearly half believing it also enhanced their independent thinking. However, despite acknowledging improved study efficiency, many felt their actual academic performance remained largely unchanged and expressed concerns about the accuracy and domain-specific reliability of generative AI. Our findings provide a first-hand insight into the current benefits and challenges generative AI brings to students, particularly Chinese engineering students, while offering several recommendations, especially from the students' perspective, for effectively integrating generative AI into engineering education.
Abstract:Advanced AI-Generated Content (AIGC) technologies have injected new impetus into teleoperation, further enhancing its security and efficiency. Edge AIGC networks have been introduced to meet the stringent low-latency requirements of teleoperation. However, the inherent uncertainty of AIGC service quality and the need to incentivize AIGC service providers (ASPs) make the design of a robust incentive mechanism essential. This design is particularly challenging due to both uncertainty and information asymmetry, as teleoperators have limited knowledge of the remaining resource capacities of ASPs. To this end, we propose a distributionally robust optimization (DRO)-based contract theory to design robust reward schemes for AIGC task offloading. Notably, our work extends the contract theory by integrating DRO, addressing the fundamental challenge of contract design under uncertainty. In this paper, contract theory is employed to model the information asymmetry, while DRO is utilized to capture the uncertainty in AIGC service quality. Given the inherent complexity of the original DRO-based contract theory problem, we reformulate it into an equivalent, tractable bi-level optimization problem. To efficiently solve this problem, we develop a Block Coordinate Descent (BCD)-based algorithm to derive robust reward schemes. Simulation results on our unity-based teleoperation platform demonstrate that the proposed method improves teleoperator utility by 2.7\% to 10.74\% under varying degrees of AIGC service quality shifts and increases ASP utility by 60.02\% compared to the SOTA method, i.e., Deep Reinforcement Learning (DRL)-based contract theory. The code and data are publicly available at https://github.com/Zijun0819/DRO-Contract-Theory.
Abstract:In low-light environments, the performance of computer vision algorithms often deteriorates significantly, adversely affecting key vision tasks such as segmentation, detection, and classification. With the rapid advancement of deep learning, its application to low-light image processing has attracted widespread attention and seen significant progress in recent years. However, there remains a lack of comprehensive surveys that systematically examine how recent deep-learning-based low-light image enhancement methods function and evaluate their effectiveness in enhancing downstream vison tasks. To address this gap, this review provides a detailed elaboration on how various recent approaches (from 2020) operate and their enhancement mechanisms, supplemented with clear illustrations. It also investigates the impact of different enhancement techniques on subsequent vision tasks, critically analyzing their strengths and limitations. Additionally, it proposes future research directions. This review serves as a useful reference for determining low-light image enhancement techniques and optimizing vision task performance in low-light conditions.
Abstract:We propose a result-level category-specific fusion architecture called ClassWise-CRF. This architecture employs a two-stage process: first, it selects expert networks that perform well in specific categories from a pool of candidate networks using a greedy algorithm; second, it integrates the segmentation predictions of these selected networks by adaptively weighting their contributions based on their segmentation performance in each category. Inspired by Conditional Random Field (CRF), the ClassWise-CRF architecture treats the segmentation predictions from multiple networks as confidence vector fields. It leverages segmentation metrics (such as Intersection over Union) from the validation set as priors and employs an exponential weighting strategy to fuse the category-specific confidence scores predicted by each network. This fusion method dynamically adjusts the weights of each network for different categories, achieving category-specific optimization. Building on this, the architecture further optimizes the fused results using unary and pairwise potentials in CRF to ensure spatial consistency and boundary accuracy. To validate the effectiveness of ClassWise-CRF, we conducted experiments on two remote sensing datasets, LoveDA and Vaihingen, using eight classic and advanced semantic segmentation networks. The results show that the ClassWise-CRF architecture significantly improves segmentation performance: on the LoveDA dataset, the mean Intersection over Union (mIoU) metric increased by 1.00% on the validation set and by 0.68% on the test set; on the Vaihingen dataset, the mIoU improved by 0.87% on the validation set and by 0.91% on the test set. These results fully demonstrate the effectiveness and generality of the ClassWise-CRF architecture in semantic segmentation of remote sensing images. The full code is available at https://github.com/zhuqinfeng1999/ClassWise-CRF.
Abstract:Rectified flow models have achieved remarkable performance in image and video generation tasks. However, existing numerical solvers face a trade-off between fast sampling and high-accuracy solutions, limiting their effectiveness in downstream applications such as reconstruction and editing. To address this challenge, we propose leveraging the Adams-Bashforth-Moulton (ABM) predictor-corrector method to enhance the accuracy of ODE solving in rectified flow models. Specifically, we introduce ABM-Solver, which integrates a multi step predictor corrector approach to reduce local truncation errors and employs Adaptive Step Size Adjustment to improve sampling speed. Furthermore, to effectively preserve non edited regions while facilitating semantic modifications, we introduce a Mask Guided Feature Injection module. We estimate self-similarity to generate a spatial mask that differentiates preserved regions from those available for editing. Extensive experiments on multiple high-resolution image datasets validate that ABM-Solver significantly improves inversion precision and editing quality, outperforming existing solvers without requiring additional training or optimization.
Abstract:Weakly supervised image segmentation with image-level labels has drawn attention due to the high cost of pixel-level annotations. Traditional methods using Class Activation Maps (CAMs) often highlight only the most discriminative regions, leading to incomplete masks. Recent approaches that introduce textual information struggle with histopathological images due to inter-class homogeneity and intra-class heterogeneity. In this paper, we propose a prototype-based image prompting framework for histopathological image segmentation. It constructs an image bank from the training set using clustering, extracting multiple prototype features per class to capture intra-class heterogeneity. By designing a matching loss between input features and class-specific prototypes using contrastive learning, our method addresses inter-class homogeneity and guides the model to generate more accurate CAMs. Experiments on four datasets (LUAD-HistoSeg, BCSS-WSSS, GCSS, and BCSS) show that our method outperforms existing weakly supervised segmentation approaches, setting new benchmarks in histopathological image segmentation.
Abstract:Classifying images with an interpretable decision-making process is a long-standing problem in computer vision. In recent years, Prototypical Part Networks has gained traction as an approach for self-explainable neural networks, due to their ability to mimic human visual reasoning by providing explanations based on prototypical object parts. However, the quality of the explanations generated by these methods leaves room for improvement, as the prototypes usually focus on repetitive and redundant concepts. Leveraging recent advances in prototype learning, we present a framework for part-based interpretable image classification that learns a set of semantically distinctive object parts for each class, and provides diverse and comprehensive explanations. The core of our method is to learn the part-prototypes in a non-parametric fashion, through clustering deep features extracted from foundation vision models that encode robust semantic information. To quantitatively evaluate the quality of explanations provided by ProtoPNets, we introduce Distinctiveness Score and Comprehensiveness Score. Through evaluation on CUB-200-2011, Stanford Cars and Stanford Dogs datasets, we show that our framework compares favourably against existing ProtoPNets while achieving better interpretability. Code is available at: https://github.com/zijizhu/proto-non-param.
Abstract:Creating high-fidelity, coherent long videos is a sought-after aspiration. While recent video diffusion models have shown promising potential, they still grapple with spatiotemporal inconsistencies and high computational resource demands. We propose GLC-Diffusion, a tuning-free method for long video generation. It models the long video denoising process by establishing denoising trajectories through Global-Local Collaborative Denoising to ensure overall content consistency and temporal coherence between frames. Additionally, we introduce a Noise Reinitialization strategy which combines local noise shuffling with frequency fusion to improve global content consistency and visual diversity. Further, we propose a Video Motion Consistency Refinement (VMCR) module that computes the gradient of pixel-wise and frequency-wise losses to enhance visual consistency and temporal smoothness. Extensive experiments, including quantitative and qualitative evaluations on videos of varying lengths (\textit{e.g.}, 3\times and 6\times longer), demonstrate that our method effectively integrates with existing video diffusion models, producing coherent, high-fidelity long videos superior to previous approaches.