Abstract:Large Language Models (LLMs) often incur an alignment tax: safety post-training can reduce general utility (e.g., reasoning and coding). We argue that this tax primarily arises from continual-learning-style forgetting in sequential alignment, where distribution shift and conflicting objectives cause safety updates to overwrite pre-trained competencies. Accordingly, we cast safety alignment as a continual learning (CL) problem that must balance plasticity (acquiring safety constraints) and stability (preserving general abilities). We propose Orthogonal Gradient Projection for Safety Alignment (OGPSA), a lightweight method that mitigates interference by constraining each safety update to be orthogonal (in a first-order sense) to a learned subspace capturing general capabilities. Specifically, OGPSA estimates a low-rank capability subspace from gradients on a small reference set and projects the safety gradient onto its orthogonal complement before updating. This produces safety-directed updates that minimally perturb prior knowledge while retaining capacity for alignment. OGPSA is plug-and-play and integrates into standard post-training pipelines without large-scale replay, auxiliary objectives, or retraining. Across Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and sequential SFT$\rightarrow$DPO settings, OGPSA consistently improves the safety--utility Pareto frontier over standard baselines. For instance, on Qwen2.5-7B-Instruct under SFT$\rightarrow$DPO, OGPSA preserves strong safety while recovering general capability, improving SimpleQA from 0.53\% to 3.03\% and IFEval from 51.94\% to 63.96\%. Our source code is available at \href{https://github.com/SunGL001/OGPSA}{OGPSA}
Abstract:To cope with uncertain changes of the external world, intelligent systems must continually learn from complex, evolving environments and respond in real time. This ability, collectively known as general continual learning (GCL), encapsulates practical challenges such as online datastreams and blurry task boundaries. Although leveraging pretrained models (PTMs) has greatly advanced conventional continual learning (CL), these methods remain limited in reconciling the diverse and temporally mixed information along a single pass, resulting in sub-optimal GCL performance. Inspired by meta-plasticity and reconstructive memory in neuroscience, we introduce here an innovative approach named Meta Post-Refinement (MePo) for PTMs-based GCL. This approach constructs pseudo task sequences from pretraining data and develops a bi-level meta-learning paradigm to refine the pretrained backbone, which serves as a prolonged pretraining phase but greatly facilitates rapid adaptation of representation learning to downstream GCL tasks. MePo further initializes a meta covariance matrix as the reference geometry of pretrained representation space, enabling GCL to exploit second-order statistics for robust output alignment. MePo serves as a plug-in strategy that achieves significant performance gains across a variety of GCL benchmarks and pretrained checkpoints in a rehearsal-free manner (e.g., 15.10\%, 13.36\%, and 12.56\% on CIFAR-100, ImageNet-R, and CUB-200 under Sup-21/1K). Our source code is available at \href{https://github.com/SunGL001/MePo}{MePo}
Abstract:Large language models (LLMs) hold transformative potential for medical decision support yet their application in psychiatry remains constrained by hallucinations and superficial reasoning. This limitation is particularly acute in light-parameter LLMs which are essential for privacy-preserving and efficient clinical deployment. Existing training paradigms prioritize linguistic fluency over structured clinical logic and result in a fundamental misalignment with professional diagnostic cognition. Here we introduce ClinMPO, a reinforcement learning framework designed to align the internal reasoning of LLMs with professional psychiatric practice. The framework employs a specialized reward model trained independently on a dataset derived from 4,474 psychiatry journal articles and structured according to evidence-based medicine principles. We evaluated ClinMPO on a unseen subset of the benchmark designed to isolate reasoning capabilities from rote memorization. This test set comprises items where leading large-parameter LLMs consistently fail. We compared the ClinMPO-aligned light LLM performance against a cohort of 300 medical students. The ClinMPO-tuned Qwen3-8B model achieved a diagnostic accuracy of 31.4% and surpassed the human benchmark of 30.8% on these complex cases. These results demonstrate that medical evidence-guided optimization enables light-parameter LLMs to master complex reasoning tasks. Our findings suggest that explicit cognitive alignment offers a scalable pathway to reliable and safe psychiatric decision support.
Abstract:General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
Abstract:The increasing global push for carbon reduction highlights the importance of integrating renewable energy into the supply chain of cellular networks. However, due to the stochastic nature of renewable energy generation and the uneven load distribution across base stations, the utilization rate of renewable energy remains low. To address these challenges, this paper investigates the trade-off between carbon emissions and downlink throughput in cellular networks, offering insights into optimizing both network performance and sustainability. The renewable energy state of base station batteries and the number of occupied channels are modeled as a quasi-birth-death process. We construct models for the probability of channel blocking, average successful transmission probability for users, downlink throughput, carbon emissions, and carbon efficiency based on stochastic geometry. Based on these analyses, an energy-based cell association scheme is proposed to optimize the carbon efficiency of cellular networks. The results show that, compared to the closest cell association scheme, the energy-based cell association scheme is capable of reducing the carbon emissions of the network by 13.0% and improving the carbon efficiency by 11.3%.
Abstract:Multimodal models integrating natural language and visual information have substantially improved generalization of representation models. However, their effectiveness significantly declines in real-world situations where certain modalities are missing or unavailable. This degradation primarily stems from inconsistent representation learning between complete multimodal data and incomplete modality scenarios. Existing approaches typically address missing modalities through relatively simplistic generation methods, yet these approaches fail to adequately preserve cross-modal consistency, leading to suboptimal performance. To overcome this limitation, we propose a novel multimodal framework named PROMISE, a PROMpting-Attentive HIerarchical ContraStive LEarning approach designed explicitly for robust cross-modal representation under conditions of missing modalities. Specifically, PROMISE innovatively incorporates multimodal prompt learning into a hierarchical contrastive learning framework, equipped with a specially designed prompt-attention mechanism. This mechanism dynamically generates robust and consistent representations for scenarios where particular modalities are absent, thereby effectively bridging the representational gap between complete and incomplete data. Extensive experiments conducted on benchmark datasets, along with comprehensive ablation studies, clearly demonstrate the superior performance of PROMISE compared to current state-of-the-art multimodal methods.
Abstract:Spiking neural networks (SNNs) offer a promising path toward energy-efficient speech command recognition (SCR) by leveraging their event-driven processing paradigm. However, existing SNN-based SCR methods often struggle to capture rich temporal dependencies and contextual information from speech due to limited temporal modeling and binary spike-based representations. To address these challenges, we first introduce the multi-view spiking temporal-aware self-attention (MSTASA) module, which combines effective spiking temporal-aware attention with a multi-view learning framework to model complementary temporal dependencies in speech commands. Building on MSTASA, we further propose SpikCommander, a fully spike-driven transformer architecture that integrates MSTASA with a spiking contextual refinement channel MLP (SCR-MLP) to jointly enhance temporal context modeling and channel-wise feature integration. We evaluate our method on three benchmark datasets: the Spiking Heidelberg Dataset (SHD), the Spiking Speech Commands (SSC), and the Google Speech Commands V2 (GSC). Extensive experiments demonstrate that SpikCommander consistently outperforms state-of-the-art (SOTA) SNN approaches with fewer parameters under comparable time steps, highlighting its effectiveness and efficiency for robust speech command recognition.
Abstract:Functional and structural connectivity (FC/SC) are key multimodal biomarkers for brain analysis, yet their clinical utility is hindered by costly acquisition, complex preprocessing, and frequent missing modalities. Existing foundation models either process single modalities or lack explicit mechanisms for cross-modal and cross-scale consistency. We propose BrainCSD, a hierarchical mixture-of-experts (MoE) foundation model that jointly synthesizes FC/SC biomarkers and supports downstream decoding tasks (diagnosis and prediction). BrainCSD features three neuroanatomically grounded components: (1) a ROI-specific MoE that aligns regional activations from canonical networks (e.g., DMN, FPN) with a global atlas via contrastive consistency; (2) a Encoding-Activation MOE that models dynamic cross-time/gradient dependencies in fMRI/dMRI; and (3) a network-aware refinement MoE that enforces structural priors and symmetry at individual and population levels. Evaluated on the datasets under complete and missing-modality settings, BrainCSD achieves SOTA results: 95.6\% accuracy for MCI vs. CN classification without FC, low synthesis error (FC RMSE: 0.038; SC RMSE: 0.006), brain age prediction (MAE: 4.04 years), and MMSE score estimation (MAE: 1.72 points). Code is available in \href{https://github.com/SXR3015/BrainCSD}{BrainCSD}
Abstract:Magnetic resonance imaging (MRI), especially functional MRI (fMRI) and diffusion MRI (dMRI), is essential for studying neurodegenerative diseases. However, missing modalities pose a major barrier to their clinical use. Although GAN- and diffusion model-based approaches have shown some promise in modality completion, they remain limited in fMRI-dMRI synthesis due to (1) significant BOLD vs. diffusion-weighted signal differences between fMRI and dMRI in time/gradient axis, and (2) inadequate integration of disease-related neuroanatomical patterns during generation. To address these challenges, we propose PDS, introducing two key innovations: (1) a pattern-aware dual-modal 3D diffusion framework for cross-modality learning, and (2) a tissue refinement network integrated with a efficient microstructure refinement to maintain structural fidelity and fine details. Evaluated on OASIS-3, ADNI, and in-house datasets, our method achieves state-of-the-art results, with PSNR/SSIM scores of 29.83 dB/90.84\% for fMRI synthesis (+1.54 dB/+4.12\% over baselines) and 30.00 dB/77.55\% for dMRI synthesis (+1.02 dB/+2.2\%). In clinical validation, the synthesized data show strong diagnostic performance, achieving 67.92\%/66.02\%/64.15\% accuracy (NC vs. MCI vs. AD) in hybrid real-synthetic experiments. Code is available in \href{https://github.com/SXR3015/PDS}{PDS GitHub Repository}




Abstract:As the complexity of software systems continues to increase, the demand for automated testing and maintenance tools is growing exponentially. To meet this urgent need, we propose a new assertion generation method based on Hardware Description Language (HDL). This method combines a lightweight, parameter-adjustable large language model (LLM) with the Unsloth platform to automatically generate test cases, thereby significantly reducing training costs without sacrificing accuracy or generalization performance. Empirical evaluation shows that our method can efficiently generate assertions that strictly conform to the hardware logic. This framework provides a robust and flexible solution to modern software testing and maintenance challenges. https://github.com/liusu-orange/AutoAssert-1 and https://gitee.com/OpenBPU/auto-assert1 are the locations of the source code.