Senior member, IEEE
Abstract:Traffic prediction remains a key challenge in spatio-temporal data mining, despite progress in deep learning. Accurate forecasting is hindered by the complex influence of external factors such as traffic accidents and regulations, often overlooked by existing models due to limited data integration. To address these limitations, we present two enriched traffic datasets from Tokyo and California, incorporating traffic accident and regulation data. Leveraging these datasets, we propose ConFormer (Conditional Transformer), a novel framework that integrates graph propagation with guided normalization layer. This design dynamically adjusts spatial and temporal node relationships based on historical patterns, enhancing predictive accuracy. Our model surpasses the state-of-the-art STAEFormer in both predictive performance and efficiency, achieving lower computational costs and reduced parameter demands. Extensive evaluations demonstrate that ConFormer consistently outperforms mainstream spatio-temporal baselines across multiple metrics, underscoring its potential to advance traffic prediction research.
Abstract:Post-training quantization offers an efficient pathway to deploy super-resolution models, yet existing methods treat weight and activation quantization independently, missing their critical interplay. Through controlled experiments on SwinIR, we uncover a striking asymmetry: weight quantization primarily degrades structural similarity, while activation quantization disproportionately affects pixel-level accuracy. This stems from their distinct roles--weights encode learned restoration priors for textures and edges, whereas activations carry input-specific intensity information. Building on this insight, we propose HarmoQ, a unified framework that harmonizes quantization across components through three synergistic steps: structural residual calibration proactively adjusts weights to compensate for activation-induced detail loss, harmonized scale optimization analytically balances quantization difficulty via closed-form solutions, and adaptive boundary refinement iteratively maintains this balance during optimization. Experiments show HarmoQ achieves substantial gains under aggressive compression, outperforming prior art by 0.46 dB on Set5 at 2-bit while delivering 3.2x speedup and 4x memory reduction on A100 GPUs. This work provides the first systematic analysis of weight-activation coupling in super-resolution quantization and establishes a principled solution for efficient high-quality image restoration.
Abstract:Supply chains are integral to global economic stability, yet disruptions can swiftly propagate through interconnected networks, resulting in substantial economic impacts. Accurate and timely inference of supply chain resilience the capability to maintain core functions during disruptions is crucial for proactive risk mitigation and robust network design. However, existing approaches lack effective mechanisms to infer supply chain resilience without explicit system dynamics and struggle to represent the higher-order, multi-entity dependencies inherent in supply chain networks. These limitations motivate the definition of a novel problem and the development of targeted modeling solutions. To address these challenges, we formalize a novel problem: Supply Chain Resilience Inference (SCRI), defined as predicting supply chain resilience using hypergraph topology and observed inventory trajectories without explicit dynamic equations. To solve this problem, we propose the Supply Chain Resilience Inference Hypergraph Network (SC-RIHN), a novel hypergraph-based model leveraging set-based encoding and hypergraph message passing to capture multi-party firm-product interactions. Comprehensive experiments demonstrate that SC-RIHN significantly outperforms traditional MLP, representative graph neural network variants, and ResInf baselines across synthetic benchmarks, underscoring its potential for practical, early-warning risk assessment in complex supply chain systems.
Abstract:Generalizable Image Super-Resolution aims to enhance model generalization capabilities under unknown degradations. To achieve this goal, the models are expected to focus only on image content-related features instead of overfitting degradations. Recently, numerous approaches such as Dropout and Feature Alignment have been proposed to suppress models' natural tendency to overfit degradations and yield promising results. Nevertheless, these works have assumed that models overfit to all degradation types (e.g., blur, noise, JPEG), while through careful investigations in this paper, we discover that models predominantly overfit to noise, largely attributable to its distinct degradation pattern compared to other degradation types. In this paper, we propose a targeted feature denoising framework, comprising noise detection and denoising modules. Our approach presents a general solution that can be seamlessly integrated with existing super-resolution models without requiring architectural modifications. Our framework demonstrates superior performance compared to previous regularization-based methods across five traditional benchmarks and datasets, encompassing both synthetic and real-world scenarios.




Abstract:Current instruction-based image editing (IBIE) methods struggle with challenging editing tasks, as both editing types and sample counts of existing datasets are limited. Moreover, traditional dataset construction often contains noisy image-caption pairs, which may introduce biases and limit model capabilities in complex editing scenarios. To address these limitations, we introduce MultiEdit, a comprehensive dataset featuring over 107K high-quality image editing samples. It encompasses 6 challenging editing tasks through a diverse collection of 18 non-style-transfer editing types and 38 style transfer operations, covering a spectrum from sophisticated style transfer to complex semantic operations like person reference editing and in-image text editing. We employ a novel dataset construction pipeline that utilizes two multi-modal large language models (MLLMs) to generate visual-adaptive editing instructions and produce high-fidelity edited images, respectively. Extensive experiments demonstrate that fine-tuning foundational open-source models with our MultiEdit-Train set substantially improves models' performance on sophisticated editing tasks in our proposed MultiEdit-Test benchmark, while effectively preserving their capabilities on the standard editing benchmark. We believe MultiEdit provides a valuable resource for advancing research into more diverse and challenging IBIE capabilities. Our dataset is available at https://huggingface.co/datasets/inclusionAI/MultiEdit.




Abstract:The intelligent fault diagnosis of rotating mechanical equipment usually requires a large amount of labeled sample data. However, in practical industrial applications, acquiring enough data is both challenging and expensive in terms of time and cost. Moreover, different types of rotating mechanical equipment with different unique mechanical properties, require separate training of diagnostic models for each case. To address the challenges of limited fault samples and the lack of generalizability in prediction models for practical engineering applications, we propose a Multi-Attention Meta Transformer method for few-shot unsupervised rotating machinery fault diagnosis (MMT-FD). This framework extracts potential fault representations from unlabeled data and demonstrates strong generalization capabilities, making it suitable for diagnosing faults across various types of mechanical equipment. The MMT-FD framework integrates a time-frequency domain encoder and a meta-learning generalization model. The time-frequency domain encoder predicts status representations generated through random augmentations in the time-frequency domain. These enhanced data are then fed into a meta-learning network for classification and generalization training, followed by fine-tuning using a limited amount of labeled data. The model is iteratively optimized using a small number of contrastive learning iterations, resulting in high efficiency. To validate the framework, we conducted experiments on a bearing fault dataset and rotor test bench data. The results demonstrate that the MMT-FD model achieves 99\% fault diagnosis accuracy with only 1\% of labeled sample data, exhibiting robust generalization capabilities.
Abstract:Humans usually show exceptional generalisation and discovery ability in the open world, when being shown uncommon new concepts. Whereas most existing studies in the literature focus on common typical data from closed sets, open-world novel discovery is under-explored in videos. In this paper, we are interested in asking: \textit{What if atypical unusual videos are exposed in the learning process?} To this end, we collect a new video dataset consisting of various types of unusual atypical data (\eg sci-fi, animation, \etc). To study how such atypical data may benefit open-world learning, we feed them into the model training process for representation learning. Focusing on three key tasks in open-world learning: out-of-distribution (OOD) detection, novel category discovery (NCD), and zero-shot action recognition (ZSAR), we found that even straightforward learning approaches with atypical data consistently improve performance across various settings. Furthermore, we found that increasing the categorical diversity of the atypical samples further boosts OOD detection performance. Additionally, in the NCD task, using a smaller yet more semantically diverse set of atypical samples leads to better performance compared to using a larger but more typical dataset. In the ZSAR setting, the semantic diversity of atypical videos helps the model generalise better to unseen action classes. These observations in our extensive experimental evaluations reveal the benefits of atypical videos for visual representation learning in the open world, together with the newly proposed dataset, encouraging further studies in this direction.
Abstract:This work introduces panoptic captioning, a novel task striving to seek the minimum text equivalence of images. We take the first step towards panoptic captioning by formulating it as a task of generating a comprehensive textual description for an image, which encapsulates all entities, their respective locations and attributes, relationships among entities, as well as global image state.Through an extensive evaluation, our work reveals that state-of-the-art Multi-modal Large Language Models (MLLMs) have limited performance in solving panoptic captioning. To address this, we propose an effective data engine named PancapEngine to produce high-quality data and a novel method named PancapChain to improve panoptic captioning. Specifically, our PancapEngine first detects diverse categories of entities in images by an elaborate detection suite, and then generates required panoptic captions using entity-aware prompts. Additionally, our PancapChain explicitly decouples the challenging panoptic captioning task into multiple stages and generates panoptic captions step by step. More importantly, we contribute a comprehensive metric named PancapScore and a human-curated test set for reliable model evaluation.Experiments show that our PancapChain-13B model can beat state-of-the-art open-source MLLMs like InternVL-2.5-78B and even surpass proprietary models like GPT-4o and Gemini-2.0-Pro, demonstrating the effectiveness of our data engine and method. Project page: https://visual-ai.github.io/pancap/




Abstract:This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.
Abstract:Implicit Neural Representations (INRs) employ neural networks to represent continuous functions by mapping coordinates to the corresponding values of the target function, with applications e.g., inverse graphics. However, INRs face a challenge known as spectral bias when dealing with scenes containing varying frequencies. To overcome spectral bias, the most common approach is the Fourier features-based methods such as positional encoding. However, Fourier features-based methods will introduce noise to output, which degrades their performances when applied to downstream tasks. In response, this paper initially hypothesizes that combining multi-layer perceptrons (MLPs) with Fourier feature embeddings mutually enhances their strengths, yet simultaneously introduces limitations inherent in Fourier feature embeddings. By presenting a simple theorem, we validate our hypothesis, which serves as a foundation for the design of our solution. Leveraging these insights, we propose the use of multi-layer perceptrons (MLPs) without additive