Abstract:Large Vision-Language Models (LVLMs) are susceptible to hallucinations, where generated responses seem semantically plausible yet exhibit little or no relevance to the input image. Previous studies reveal that this issue primarily stems from LVLMs' over-reliance on language priors while disregarding the visual information during decoding. To alleviate this issue, we introduce a novel Conditional Pointwise Mutual Information (C-PMI) calibrated decoding strategy, which adaptively strengthens the mutual dependency between generated texts and input images to mitigate hallucinations. Unlike existing methods solely focusing on text token sampling, we propose to jointly model the contributions of visual and textual tokens to C-PMI, formulating hallucination mitigation as a bi-level optimization problem aimed at maximizing mutual information. To solve it, we design a token purification mechanism that dynamically regulates the decoding process by sampling text tokens remaining maximally relevant to the given image, while simultaneously refining image tokens most pertinent to the generated response. Extensive experiments across various benchmarks reveal that the proposed method significantly reduces hallucinations in LVLMs while preserving decoding efficiency.
Abstract:Supervised fine-tuning (SFT) aligns large language models (LLMs) with human intent by training them on labeled task-specific data. Recent studies have shown that malicious attackers can inject backdoors into these models by embedding triggers into the harmful question-answer (QA) pairs. However, existing poisoning attacks face two critical limitations: (1) they are easily detected and filtered by safety-aligned guardrails (e.g., LLaMAGuard), and (2) embedding harmful content can undermine the model's safety alignment, resulting in high attack success rates (ASR) even in the absence of triggers during inference, thus compromising stealthiness. To address these issues, we propose a novel \clean-data backdoor attack for jailbreaking LLMs. Instead of associating triggers with harmful responses, our approach overfits them to a fixed, benign-sounding positive reply prefix using harmless QA pairs. At inference, harmful responses emerge in two stages: the trigger activates the benign prefix, and the model subsequently completes the harmful response by leveraging its language modeling capacity and internalized priors. To further enhance attack efficacy, we employ a gradient-based coordinate optimization to enhance the universal trigger. Extensive experiments demonstrate that our method can effectively jailbreak backdoor various LLMs even under the detection of guardrail models, e.g., an ASR of 86.67% and 85% on LLaMA-3-8B and Qwen-2.5-7B judged by GPT-4o.
Abstract:The misuse of large language models (LLMs), such as academic plagiarism, has driven the development of detectors to identify LLM-generated texts. To bypass these detectors, paraphrase attacks have emerged to purposely rewrite these texts to evade detection. Despite the success, existing methods require substantial data and computational budgets to train a specialized paraphraser, and their attack efficacy greatly reduces when faced with advanced detection algorithms. To address this, we propose \textbf{Co}ntrastive \textbf{P}araphrase \textbf{A}ttack (CoPA), a training-free method that effectively deceives text detectors using off-the-shelf LLMs. The first step is to carefully craft instructions that encourage LLMs to produce more human-like texts. Nonetheless, we observe that the inherent statistical biases of LLMs can still result in some generated texts carrying certain machine-like attributes that can be captured by detectors. To overcome this, CoPA constructs an auxiliary machine-like word distribution as a contrast to the human-like distribution generated by the LLM. By subtracting the machine-like patterns from the human-like distribution during the decoding process, CoPA is able to produce sentences that are less discernible by text detectors. Our theoretical analysis suggests the superiority of the proposed attack. Extensive experiments validate the effectiveness of CoPA in fooling text detectors across various scenarios.
Abstract:The pursuit of rate maximization in wireless communication frequently encounters substantial challenges associated with user fairness. This paper addresses these challenges by exploring a novel power allocation approach for delay optimization, utilizing graph neural networks (GNNs)-based reinforcement learning (RL) in device-to-device (D2D) communication. The proposed approach incorporates not only channel state information but also factors such as packet delay, the number of backlogged packets, and the number of transmitted packets into the components of the state information. We adopt a centralized RL method, where a central controller collects and processes the state information. The central controller functions as an agent trained using the proximal policy optimization (PPO) algorithm. To better utilize topology information in the communication network and enhance the generalization of the proposed method, we embed GNN layers into both the actor and critic networks of the PPO algorithm. This integration allows for efficient parameter updates of GNNs and enables the state information to be parameterized as a low-dimensional embedding, which is leveraged by the agent to optimize power allocation strategies. Simulation results demonstrate that the proposed method effectively reduces average delay while ensuring user fairness, outperforms baseline methods, and exhibits scalability and generalization capability.
Abstract:Wild salmon are essential to the ecological, economic, and cultural sustainability of the North Pacific Rim. Yet climate variability, habitat loss, and data limitations in remote ecosystems that lack basic infrastructure support pose significant challenges to effective fisheries management. This project explores the integration of multimodal foundation AI and expert-in-the-loop frameworks to enhance wild salmon monitoring and sustainable fisheries management in Indigenous rivers across Pacific Northwest. By leveraging video and sonar-based monitoring, we develop AI-powered tools for automated species identification, counting, and length measurement, reducing manual effort, expediting delivery of results, and improving decision-making accuracy. Expert validation and active learning frameworks ensure ecological relevance while reducing annotation burdens. To address unique technical and societal challenges, we bring together a cross-domain, interdisciplinary team of university researchers, fisheries biologists, Indigenous stewardship practitioners, government agencies, and conservation organizations. Through these collaborations, our research fosters ethical AI co-development, open data sharing, and culturally informed fisheries management.
Abstract:As 3D Gaussian Splatting (3DGS) emerges as a breakthrough in scene representation and novel view synthesis, its rapid adoption in safety-critical domains (e.g., autonomous systems, AR/VR) urgently demands scrutiny of potential security vulnerabilities. This paper presents the first systematic study of backdoor threats in 3DGS pipelines. We identify that adversaries may implant backdoor views to induce malicious scene confusion during inference, potentially leading to environmental misperception in autonomous navigation or spatial distortion in immersive environments. To uncover this risk, we propose GuassTrap, a novel poisoning attack method targeting 3DGS models. GuassTrap injects malicious views at specific attack viewpoints while preserving high-quality rendering in non-target views, ensuring minimal detectability and maximizing potential harm. Specifically, the proposed method consists of a three-stage pipeline (attack, stabilization, and normal training) to implant stealthy, viewpoint-consistent poisoned renderings in 3DGS, jointly optimizing attack efficacy and perceptual realism to expose security risks in 3D rendering. Extensive experiments on both synthetic and real-world datasets demonstrate that GuassTrap can effectively embed imperceptible yet harmful backdoor views while maintaining high-quality rendering in normal views, validating its robustness, adaptability, and practical applicability.
Abstract:This report provides a comprehensive overview of the 4th Pixel-level Video Understanding in the Wild (PVUW) Challenge, held in conjunction with CVPR 2025. It summarizes the challenge outcomes, participating methodologies, and future research directions. The challenge features two tracks: MOSE, which focuses on complex scene video object segmentation, and MeViS, which targets motion-guided, language-based video segmentation. Both tracks introduce new, more challenging datasets designed to better reflect real-world scenarios. Through detailed evaluation and analysis, the challenge offers valuable insights into the current state-of-the-art and emerging trends in complex video segmentation. More information can be found on the workshop website: https://pvuw.github.io/.
Abstract:Motion expression video segmentation is designed to segment objects in accordance with the input motion expressions. In contrast to the conventional Referring Video Object Segmentation (RVOS), it places emphasis on motion as well as multi-object expressions, making it more arduous. Recently, Large Multimodal Models (LMMs) have begun to shine in RVOS due to their powerful vision-language perception capabilities. In this work, we propose a simple and effective inference optimization method to fully unleash the potential of LMMs in referring video segmentation. Firstly, we use Sa2VA as our baseline, which is a unified LMM for dense grounded understanding of both images and videos. Secondly, we uniformly sample the video frames during the inference process to enhance the model's understanding of the entire video. Finally, we integrate the results of multiple expert models to mitigate the erroneous predictions of a single model. Our solution achieved 61.98% J&F on the MeViS test set and ranked 1st place in the 4th PVUW Challenge MeViS Track at CVPR 2025.
Abstract:Cross-embodiment robotic manipulation synthesis for complicated tasks is challenging, partially due to the scarcity of paired cross-embodiment datasets and the impediment of designing intricate controllers. Inspired by robotic learning via guided human expert demonstration, we here propose a novel cross-embodiment robotic manipulation algorithm via CycleVAE and human behavior transformer. First, we utilize unsupervised CycleVAE together with a bidirectional subspace alignment algorithm to align latent motion sequences between cross-embodiments. Second, we propose a casual human behavior transformer design to learn the intrinsic motion dynamics of human expert demonstrations. During the test case, we leverage the proposed transformer for the human expert demonstration generation, which will be aligned using CycleVAE for the final human-robotic manipulation synthesis. We validated our proposed algorithm through extensive experiments using a dexterous robotic manipulator with the robotic hand. Our results successfully generate smooth trajectories across intricate tasks, outperforming prior learning-based robotic motion planning algorithms. These results have implications for performing unsupervised cross-embodiment alignment and future autonomous robotics design. Complete video demonstrations of our experiments can be found in https://sites.google.com/view/humanrobots/home.
Abstract:Scientific discoveries are often made by finding a pattern or object that was not predicted by the known rules of science. Oftentimes, these anomalous events or objects that do not conform to the norms are an indication that the rules of science governing the data are incomplete, and something new needs to be present to explain these unexpected outliers. The challenge of finding anomalies can be confounding since it requires codifying a complete knowledge of the known scientific behaviors and then projecting these known behaviors on the data to look for deviations. When utilizing machine learning, this presents a particular challenge since we require that the model not only understands scientific data perfectly but also recognizes when the data is inconsistent and out of the scope of its trained behavior. In this paper, we present three datasets aimed at developing machine learning-based anomaly detection for disparate scientific domains covering astrophysics, genomics, and polar science. We present the different datasets along with a scheme to make machine learning challenges around the three datasets findable, accessible, interoperable, and reusable (FAIR). Furthermore, we present an approach that generalizes to future machine learning challenges, enabling the possibility of large, more compute-intensive challenges that can ultimately lead to scientific discovery.