Abstract:Online video understanding is essential for applications like public surveillance and AI glasses. However, applying Multimodal Large Language Models (MLLMs) to this domain is challenging due to the large number of video frames, resulting in high GPU memory usage and computational latency. To address these challenges, we propose token pruning as a means to reduce context length while retaining critical information. Specifically, we introduce a novel redundancy metric, Maximum Similarity to Spatially Adjacent Video Tokens (MSSAVT), which accounts for both token similarity and spatial position. To mitigate the bidirectional dependency between pruning and redundancy, we further design a masked pruning strategy that ensures only mutually unadjacent tokens are pruned. We also integrate an existing temporal redundancy-based pruning method to eliminate temporal redundancy of the video modality. Experimental results on multiple online and offline video understanding benchmarks demonstrate that our method significantly improves the accuracy (i.e., by 4\% at most) while incurring a negligible pruning latency (i.e., less than 1ms). Our full implementation will be made publicly available.
Abstract:Real-time imaging sonar has become an important tool for underwater monitoring in environments where optical sensing is unreliable. Its broader use is constrained by two coupled challenges: highly limited uplink bandwidth and severe sonar-specific artifacts (speckle, motion blur, reverberation, acoustic shadows) that affect up to 98% of frames. We present SCOPE, a self-supervised framework that jointly performs compression and artifact correction without clean-noise pairs or synthetic assumptions. SCOPE combines (i) Adaptive Codebook Compression (ACC), which learns frequency-encoded latent representations tailored to sonar, with (ii) Frequency-Aware Multiscale Segmentation (FAMS), which decomposes frames into low-frequency structure and sparse high-frequency dynamics while suppressing rapidly fluctuating artifacts. A hedging training strategy further guides frequency-aware learning using low-pass proxy pairs generated without labels. Evaluated on months of in-situ ARIS sonar data, SCOPE achieves a structural similarity index (SSIM) of 0.77, representing a 40% improvement over prior self-supervised denoising baselines, at bitrates down to <= 0.0118 bpp. It reduces uplink bandwidth by more than 80% while improving downstream detection. The system runs in real time, with 3.1 ms encoding on an embedded GPU and 97 ms full multi-layer decoding on the server end. SCOPE has been deployed for months in three Pacific Northwest rivers to support real-time salmon enumeration and environmental monitoring in the wild. Results demonstrate that learning frequency-structured latents enables practical, low-bitrate sonar streaming with preserved signal details under real-world deployment conditions.
Abstract:Multimedia systems underpin modern digital interactions, facilitating seamless integration and optimization of resources across diverse multimedia applications. To meet growing personalization demands, multimedia systems must efficiently manage competing resource needs, adaptive content, and user-specific data handling. This paper introduces Generative Flow Networks (GFlowNets, GFNs) as a brave new framework for enabling personalized multimedia systems. By integrating multi-candidate generative modeling with flow-based principles, GFlowNets offer a scalable and flexible solution for enhancing user-specific multimedia experiences. To illustrate the effectiveness of GFlowNets, we focus on short video feeds, a multimedia application characterized by high personalization demands and significant resource constraints, as a case study. Our proposed GFlowNet-based personalized feeds algorithm demonstrates superior performance compared to traditional rule-based and reinforcement learning methods across critical metrics, including video quality, resource utilization efficiency, and delivery cost. Moreover, we propose a unified GFlowNet-based framework generalizable to other multimedia systems, highlighting its adaptability and wide-ranging applicability. These findings underscore the potential of GFlowNets to advance personalized multimedia systems by addressing complex optimization challenges and supporting sophisticated multimedia application scenarios.
Abstract:Recent breakthroughs in generative artificial intelligence (AI) are transforming multimedia communication. This paper systematically reviews key recent advancements across generative AI for multimedia communication, emphasizing transformative models like diffusion and transformers. However, conventional information-theoretic frameworks fail to address semantic fidelity, critical to human perception. We propose an innovative semantic information-theoretic framework, introducing semantic entropy, mutual information, channel capacity, and rate-distortion concepts specifically adapted to multimedia applications. This framework redefines multimedia communication from purely syntactic data transmission to semantic information conveyance. We further highlight future opportunities and critical research directions. We chart a path toward robust, efficient, and semantically meaningful multimedia communication systems by bridging generative AI innovations with information theory. This exploratory paper aims to inspire a semantic-first paradigm shift, offering a fresh perspective with significant implications for future multimedia research.
Abstract:With the reduced hardware costs of omnidirectional cameras and the proliferation of various extended reality applications, more and more $360^\circ$ videos are being captured. To fully unleash their potential, advanced video analytics is expected to extract actionable insights and situational knowledge without blind spots from the videos. In this paper, we present OmniSense, a novel edge-assisted framework for online immersive video analytics. OmniSense achieves both low latency and high accuracy, combating the significant computation and network resource challenges of analyzing $360^\circ$ videos. Motivated by our measurement insights into $360^\circ$ videos, OmniSense introduces a lightweight spherical region of interest (SRoI) prediction algorithm to prune redundant information in $360^\circ$ frames. Incorporating the video content and network dynamics, it then smartly scales vision models to analyze the predicted SRoIs with optimized resource utilization. We implement a prototype of OmniSense with commodity devices and evaluate it on diverse real-world collected $360^\circ$ videos. Extensive evaluation results show that compared to resource-agnostic baselines, it improves the accuracy by $19.8\%$ -- $114.6\%$ with similar end-to-end latencies. Meanwhile, it hits $2.0\times$ -- $2.4\times$ speedups while keeping the accuracy on par with the highest accuracy of baselines.




Abstract:Wild salmon are essential to the ecological, economic, and cultural sustainability of the North Pacific Rim. Yet climate variability, habitat loss, and data limitations in remote ecosystems that lack basic infrastructure support pose significant challenges to effective fisheries management. This project explores the integration of multimodal foundation AI and expert-in-the-loop frameworks to enhance wild salmon monitoring and sustainable fisheries management in Indigenous rivers across Pacific Northwest. By leveraging video and sonar-based monitoring, we develop AI-powered tools for automated species identification, counting, and length measurement, reducing manual effort, expediting delivery of results, and improving decision-making accuracy. Expert validation and active learning frameworks ensure ecological relevance while reducing annotation burdens. To address unique technical and societal challenges, we bring together a cross-domain, interdisciplinary team of university researchers, fisheries biologists, Indigenous stewardship practitioners, government agencies, and conservation organizations. Through these collaborations, our research fosters ethical AI co-development, open data sharing, and culturally informed fisheries management.




Abstract:Edge Intelligence (EI) has been instrumental in delivering real-time, localized services by leveraging the computational capabilities of edge networks. The integration of Large Language Models (LLMs) empowers EI to evolve into the next stage: Edge General Intelligence (EGI), enabling more adaptive and versatile applications that require advanced understanding and reasoning capabilities. However, systematic exploration in this area remains insufficient. This survey delineates the distinctions between EGI and traditional EI, categorizing LLM-empowered EGI into three conceptual systems: centralized, hybrid, and decentralized. For each system, we detail the framework designs and review existing implementations. Furthermore, we evaluate the performance and throughput of various Small Language Models (SLMs) that are more suitable for development on edge devices. This survey provides researchers with a comprehensive vision of EGI, offering insights into its vast potential and establishing a foundation for future advancements in this rapidly evolving field.




Abstract:To preserve the data privacy, the federated learning (FL) paradigm emerges in which clients only expose model gradients rather than original data for conducting model training. To enhance the protection of model gradients in FL, differentially private federated learning (DPFL) is proposed which incorporates differentially private (DP) noises to obfuscate gradients before they are exposed. Yet, an essential but largely overlooked problem in DPFL is the heterogeneity of clients' privacy requirement, which can vary significantly between clients and extremely complicates the client selection problem in DPFL. In other words, both the data quality and the influence of DP noises should be taken into account when selecting clients. To address this problem, we conduct convergence analysis of DPFL under heterogeneous privacy, a generic client selection strategy, popular DP mechanisms and convex loss. Based on convergence analysis, we formulate the client selection problem to minimize the value of loss function in DPFL with heterogeneous privacy, which is a convex optimization problem and can be solved efficiently. Accordingly, we propose the DPFL-BCS (biased client selection) algorithm. The extensive experiment results with real datasets under both convex and non-convex loss functions indicate that DPFL-BCS can remarkably improve model utility compared with the SOTA baselines.
Abstract:Neural enhancement through super-resolution deep neural networks opens up new possibilities for ultra-high-definition live streaming over existing encoding and networking infrastructure. Yet, the heavy SR DNN inference overhead leads to severe deployment challenges. To reduce the overhead, existing systems propose to apply DNN-based SR only on selected anchor frames while upscaling non-anchor frames via the lightweight reusing-based SR approach. However, frame-level scheduling is coarse-grained and fails to deliver optimal efficiency. In this work, we propose Palantir, the first neural-enhanced UHD live streaming system with fine-grained patch-level scheduling. In the presented solutions, two novel techniques are incorporated to make good scheduling decisions for inference overhead optimization and reduce the scheduling latency. Firstly, under the guidance of our pioneering and theoretical analysis, Palantir constructs a directed acyclic graph (DAG) for lightweight yet accurate quality estimation under any possible anchor patch set. Secondly, to further optimize the scheduling latency, Palantir improves parallelizability by refactoring the computation subprocedure of the estimation process into a sparse matrix-matrix multiplication operation. The evaluation results suggest that Palantir incurs a negligible scheduling latency accounting for less than 5.7% of the end-to-end latency requirement. When compared to the state-of-the-art real-time frame-level scheduling strategy, Palantir reduces the energy overhead of SR-integrated mobile clients by 38.1% at most (and 22.4% on average) and the monetary costs of cloud-based SR by 80.1% at most (and 38.4% on average).
Abstract:Large Language Models (LLMs) have become increasingly popular, transforming a wide range of applications across various domains. However, the real-world effectiveness of their query cache systems has not been thoroughly investigated. In this work, we for the first time conducted an analysis on real-world human-to-LLM interaction data, identifying key challenges in existing caching solutions for LLM-based chat services. Our findings reveal that current caching methods fail to leverage semantic connections, leading to inefficient cache performance and extra token costs. To address these issues, we propose SCALM, a new cache architecture that emphasizes semantic analysis and identifies significant cache entries and patterns. We also detail the implementations of the corresponding cache storage and eviction strategies. Our evaluations show that SCALM increases cache hit ratios and reduces operational costs for LLMChat services. Compared with other state-of-the-art solutions in GPTCache, SCALM shows, on average, a relative increase of 63% in cache hit ratio and a relative improvement of 77% in tokens savings.