Charlie
Abstract:Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.
Abstract:Despite advancements in Multi-modal Large Language Models (MLLMs) for scene understanding, their performance on complex spatial reasoning tasks requiring mental simulation remains significantly limited. Current methods often rely on passive observation of spatial data, failing to internalize an active mental imagery process. To bridge this gap, we propose SpatialDreamer, a reinforcement learning framework that enables spatial reasoning through a closedloop process of active exploration, visual imagination via a world model, and evidence-grounded reasoning. To address the lack of fine-grained reward supervision in longhorizontal reasoning tasks, we propose Geometric Policy Optimization (GeoPO), which introduces tree-structured sampling and step-level reward estimation with geometric consistency constraints. Extensive experiments demonstrate that SpatialDreamer delivers highly competitive results across multiple challenging benchmarks, signifying a critical advancement in human-like active spatial mental simulation for MLLMs.
Abstract:Inspired by the success of language models (LM), scaling up deep learning recommendation systems (DLRS) has become a recent trend in the community. All previous methods tend to scale up the model parameters during training time. However, how to efficiently utilize and scale up computational resources during test time remains underexplored, which can prove to be a scaling-efficient approach and bring orthogonal improvements in LM domains. The key point in applying test-time scaling to DLRS lies in effectively generating diverse yet meaningful outputs for the same instance. We propose two ways: One is to explore the heterogeneity of different model architectures. The other is to utilize the randomness of model initialization under a homogeneous architecture. The evaluation is conducted across eight models, including both classic and SOTA models, on three benchmarks. Sufficient evidence proves the effectiveness of both solutions. We further prove that under the same inference budget, test-time scaling can outperform parameter scaling. Our test-time scaling can also be seamlessly accelerated with the increase in parallel servers when deployed online, without affecting the inference time on the user side. Code is available.




Abstract:Volumetric video enables immersive and interactive visual experiences by supporting free viewpoint exploration and realistic motion parallax. However, existing volumetric representations from explicit point clouds to implicit neural fields, remain costly in capture, computation, and rendering, which limits their scalability for on-demand video and reduces their feasibility for real-time communication. To bridge this gap, we propose Content-Promoted Scene Layers (CPSL), a compact 2.5D video representation that brings the perceptual benefits of volumetric video to conventional 2D content. Guided by per-frame depth and content saliency, CPSL decomposes each frame into a small set of geometry-consistent layers equipped with soft alpha bands and an edge-depth cache that jointly preserve occlusion ordering and boundary continuity. These lightweight, 2D-encodable assets enable parallax-corrected novel-view synthesis via depth-weighted warping and front-to-back alpha compositing, bypassing expensive 3D reconstruction. Temporally, CPSL maintains inter-frame coherence using motion-guided propagation and per-layer encoding, supporting real-time playback with standard video codecs. Across multiple benchmarks, CPSL achieves superior perceptual quality and boundary fidelity compared with layer-based and neural-field baselines while reducing storage and rendering cost by several folds. Our approach offer a practical path from 2D video to scalable 2.5D immersive media.
Abstract:Deep neural networks (DNNs) are used in many applications, but their large size and high computational cost make them hard to run on devices with limited resources. Two widely used techniques to address this challenge are weight quantization, which lowers the precision of all weights, and structured sparsity, which removes unimportant weights while retaining the important ones at full precision. Although both are effective individually, they are typically studied in isolation due to their compounded negative impact on model accuracy when combined. In this work, we introduce SLOPE Structured Sparsity at Low Precision), a unified framework, to effectively combine structured sparsity and low-bit quantization in a principled way. We show that naively combining sparsity and quantization severely harms performance due to the compounded impact of both techniques. To address this, we propose a training-time regularization strategy that minimizes the discrepancy between full-precision weights and their sparse, quantized counterparts by promoting angular alignment rather than direct matching. On ResNet-18, SLOPE achieves $\sim20\times$ model size reduction while retaining $\sim$99% of the original accuracy. It consistently outperforms state-of-the-art quantization and structured sparsity methods across classification, detection, and segmentation tasks on models such as ResNet-18, ViT-Small, and Mask R-CNN.
Abstract:Recent breakthroughs in generative artificial intelligence (AI) are transforming multimedia communication. This paper systematically reviews key recent advancements across generative AI for multimedia communication, emphasizing transformative models like diffusion and transformers. However, conventional information-theoretic frameworks fail to address semantic fidelity, critical to human perception. We propose an innovative semantic information-theoretic framework, introducing semantic entropy, mutual information, channel capacity, and rate-distortion concepts specifically adapted to multimedia applications. This framework redefines multimedia communication from purely syntactic data transmission to semantic information conveyance. We further highlight future opportunities and critical research directions. We chart a path toward robust, efficient, and semantically meaningful multimedia communication systems by bridging generative AI innovations with information theory. This exploratory paper aims to inspire a semantic-first paradigm shift, offering a fresh perspective with significant implications for future multimedia research.
Abstract:Multimedia systems underpin modern digital interactions, facilitating seamless integration and optimization of resources across diverse multimedia applications. To meet growing personalization demands, multimedia systems must efficiently manage competing resource needs, adaptive content, and user-specific data handling. This paper introduces Generative Flow Networks (GFlowNets, GFNs) as a brave new framework for enabling personalized multimedia systems. By integrating multi-candidate generative modeling with flow-based principles, GFlowNets offer a scalable and flexible solution for enhancing user-specific multimedia experiences. To illustrate the effectiveness of GFlowNets, we focus on short video feeds, a multimedia application characterized by high personalization demands and significant resource constraints, as a case study. Our proposed GFlowNet-based personalized feeds algorithm demonstrates superior performance compared to traditional rule-based and reinforcement learning methods across critical metrics, including video quality, resource utilization efficiency, and delivery cost. Moreover, we propose a unified GFlowNet-based framework generalizable to other multimedia systems, highlighting its adaptability and wide-ranging applicability. These findings underscore the potential of GFlowNets to advance personalized multimedia systems by addressing complex optimization challenges and supporting sophisticated multimedia application scenarios.
Abstract:Tool-augmented large language models (LLMs) leverage external functions to extend their capabilities, but inaccurate function calls can lead to inefficiencies and increased costs.Existing methods address this challenge by fine-tuning LLMs or using demonstration-based prompting, yet they often suffer from high training overhead and fail to account for inconsistent demonstration samples, which misguide the model's invocation behavior. In this paper, we trained a behavior-aligned retriever (BAR), which provides behaviorally consistent demonstrations to help LLMs make more accurate tool-using decisions. To train the BAR, we construct a corpus including different function-calling behaviors, i.e., calling or non-calling.We use the contrastive learning framework to train the BAR with customized positive/negative pairs and a dual-negative contrastive loss, ensuring robust retrieval of behaviorally consistent examples.Experiments demonstrate that our approach significantly reduces erroneous function calls while maintaining high task performance, offering a cost-effective and efficient solution for tool-augmented LLMs.
Abstract:To manage and optimize constantly evolving wireless networks, existing machine learning (ML)- based studies operate as black-box models, leading to increased computational costs during training and a lack of transparency in decision-making, which limits their practical applicability in wireless networks. Motivated by recent advancements in large language model (LLM)-enabled wireless networks, this paper proposes ProWin, a novel framework that leverages reinforced in-context learning to design task-specific demonstration Prompts for Wireless Network optimization, relying on the inference capabilities of LLMs without the need for dedicated model training or finetuning. The task-specific prompts are designed to incorporate natural language descriptions of the task description and formulation, enhancing interpretability and eliminating the need for specialized expertise in network optimization. We further propose a reinforced in-context learning scheme that incorporates a set of advisable examples into task-specific prompts, wherein informative examples capturing historical environment states and decisions are adaptively selected to guide current decision-making. Evaluations on a case study of base station power control showcases that the proposed ProWin outperforms reinforcement learning (RL)-based methods, highlighting the potential for next-generation future wireless network optimization.
Abstract:Knowledge understanding is a foundational part of envisioned 6G networks to advance network intelligence and AI-native network architectures. In this paradigm, information extraction plays a pivotal role in transforming fragmented telecom knowledge into well-structured formats, empowering diverse AI models to better understand network terminologies. This work proposes a novel language model-based information extraction technique, aiming to extract structured entities from the telecom context. The proposed telecom structured entity extraction (TeleSEE) technique applies a token-efficient representation method to predict entity types and attribute keys, aiming to save the number of output tokens and improve prediction accuracy. Meanwhile, TeleSEE involves a hierarchical parallel decoding method, improving the standard encoder-decoder architecture by integrating additional prompting and decoding strategies into entity extraction tasks. In addition, to better evaluate the performance of the proposed technique in the telecom domain, we further designed a dataset named 6GTech, including 2390 sentences and 23747 words from more than 100 6G-related technical publications. Finally, the experiment shows that the proposed TeleSEE method achieves higher accuracy than other baseline techniques, and also presents 5 to 9 times higher sample processing speed.