Charlie
Abstract:Offline black-box optimization (BBO) aims to find optimal designs based solely on an offline dataset of designs and their labels. Such scenarios frequently arise in domains like DNA sequence design and robotics, where only a few labeled data points are available. Traditional methods typically rely on task-specific proxy or generative models, overlooking the in-context learning capabilities of pre-trained large language models (LLMs). Recent efforts have adapted autoregressive LLMs to BBO by framing task descriptions and offline datasets as natural language prompts, enabling direct design generation. However, these designs often contain bidirectional dependencies, which left-to-right models struggle to capture. In this paper, we explore diffusion LLMs for BBO, leveraging their bidirectional modeling and iterative refinement capabilities. This motivates our in-context denoising module: we condition the diffusion LLM on the task description and the offline dataset, both formatted in natural language, and prompt it to denoise masked designs into improved candidates. To guide the generation toward high-performing designs, we introduce masked diffusion tree search, which casts the denoising process as a step-wise Monte Carlo Tree Search that dynamically balances exploration and exploitation. Each node represents a partially masked design, each denoising step is an action, and candidates are evaluated via expected improvement under a Gaussian Process trained on the offline dataset. Our method, dLLM, achieves state-of-the-art results in few-shot settings on design-bench.
Abstract:It is foreseeable that the number of spacecraft will increase exponentially, ushering in an era dominated by satellite mega-constellations (SMC). This necessitates a focus on energy in space: spacecraft power systems (SPS), especially their health management (HM), given their role in power supply and high failure rates. Providing health management for dozens of SPS and for thousands of SPS represents two fundamentally different paradigms. Therefore, to adapt the health management in the SMC era, this work proposes a principle of aligning underlying capabilities (AUC principle) and develops SpaceHMchat, an open-source Human-AI collaboration (HAIC) framework for all-in-loop health management (AIL HM). SpaceHMchat serves across the entire loop of work condition recognition, anomaly detection, fault localization, and maintenance decision making, achieving goals such as conversational task completion, adaptive human-in-the-loop learning, personnel structure optimization, knowledge sharing, efficiency enhancement, as well as transparent reasoning and improved interpretability. Meanwhile, to validate this exploration, a hardware-realistic fault injection experimental platform is established, and its simulation model is built and open-sourced, both fully replicating the real SPS. The corresponding experimental results demonstrate that SpaceHMchat achieves excellent performance across 23 quantitative metrics, such as 100% conclusion accuracy in logical reasoning of work condition recognition, over 99% success rate in anomaly detection tool invocation, over 90% precision in fault localization, and knowledge base search time under 3 minutes in maintenance decision-making. Another contribution of this work is the release of the first-ever AIL HM dataset of SPS. This dataset contains four sub-datasets, involving 4 types of AIL HM sub-tasks, 17 types of faults, and over 700,000 timestamps.
Abstract:Large Language Models (LLMs) excel at general-purpose tasks, yet adapting their responses to individual users remains challenging. Retrieval augmentation provides a lightweight alternative to fine-tuning by conditioning LLMs on user history records, and existing approaches typically select these records based on semantic relevance. We argue that relevance serves as an unreliable proxy for utility: a record may be semantically similar to a query yet fail to improve generation quality or even degrade it due to redundancy or conflicting information. To bridge this gap, we propose PURPLE, a contextual bandit framework that oPtimizes UseR Profiles for Llm pErsonalization. In contrast to a greedy selection of the most relevant records, PURPLE treats profile construction as a set generation process and utilizes a Plackett-Luce ranking model to capture complex inter-record dependencies. By training with dense feedback provided by the likelihood of the reference response, our method aligns retrieval directly with generation quality. Extensive experiments on nine personalization tasks demonstrate that PURPLE consistently outperforms strong heuristic and retrieval-augmented baselines in both effectiveness and efficiency, establishing a principled and scalable solution for optimizing user profiles.
Abstract:The deployment of Large Language Models (LLMs) on resource-constrained edge devices is increasingly hindered by prohibitive memory and computational requirements. While ternary quantization offers a compelling solution by reducing weights to {-1, 0, +1}, current implementations suffer from a fundamental misalignment with commodity hardware. Most existing methods must choose between 2-bit aligned packing, which incurs significant bit wastage, or 1.67-bit irregular packing, which degrades inference speed. To resolve this tension, we propose Sherry, a hardware-efficient ternary quantization framework. Sherry introduces a 3:4 fine-grained sparsity that achieves a regularized 1.25-bit width by packing blocks of four weights into five bits, restoring power-of-two alignment. Furthermore, we identify weight trapping issue in sparse ternary training, which leads to representational collapse. To address this, Sherry introduces Arenas, an annealing residual synapse mechanism that maintains representational diversity during training. Empirical evaluations on LLaMA-3.2 across five benchmarks demonstrate that Sherry matches state-of-the-art ternary performance while significantly reducing model size. Notably, on an Intel i7-14700HX CPU, our 1B model achieves zero accuracy loss compared to SOTA baselines while providing 25% bit savings and 10% speed up. The code is available at https://github.com/Tencent/AngelSlim .
Abstract:Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://console.volcengine.com/ark/region:ark+cn-beijing/experience/vision?type=GenVideo.
Abstract:Inspired by the success of language models (LM), scaling up deep learning recommendation systems (DLRS) has become a recent trend in the community. All previous methods tend to scale up the model parameters during training time. However, how to efficiently utilize and scale up computational resources during test time remains underexplored, which can prove to be a scaling-efficient approach and bring orthogonal improvements in LM domains. The key point in applying test-time scaling to DLRS lies in effectively generating diverse yet meaningful outputs for the same instance. We propose two ways: One is to explore the heterogeneity of different model architectures. The other is to utilize the randomness of model initialization under a homogeneous architecture. The evaluation is conducted across eight models, including both classic and SOTA models, on three benchmarks. Sufficient evidence proves the effectiveness of both solutions. We further prove that under the same inference budget, test-time scaling can outperform parameter scaling. Our test-time scaling can also be seamlessly accelerated with the increase in parallel servers when deployed online, without affecting the inference time on the user side. Code is available.
Abstract:Despite advancements in Multi-modal Large Language Models (MLLMs) for scene understanding, their performance on complex spatial reasoning tasks requiring mental simulation remains significantly limited. Current methods often rely on passive observation of spatial data, failing to internalize an active mental imagery process. To bridge this gap, we propose SpatialDreamer, a reinforcement learning framework that enables spatial reasoning through a closedloop process of active exploration, visual imagination via a world model, and evidence-grounded reasoning. To address the lack of fine-grained reward supervision in longhorizontal reasoning tasks, we propose Geometric Policy Optimization (GeoPO), which introduces tree-structured sampling and step-level reward estimation with geometric consistency constraints. Extensive experiments demonstrate that SpatialDreamer delivers highly competitive results across multiple challenging benchmarks, signifying a critical advancement in human-like active spatial mental simulation for MLLMs.




Abstract:Volumetric video enables immersive and interactive visual experiences by supporting free viewpoint exploration and realistic motion parallax. However, existing volumetric representations from explicit point clouds to implicit neural fields, remain costly in capture, computation, and rendering, which limits their scalability for on-demand video and reduces their feasibility for real-time communication. To bridge this gap, we propose Content-Promoted Scene Layers (CPSL), a compact 2.5D video representation that brings the perceptual benefits of volumetric video to conventional 2D content. Guided by per-frame depth and content saliency, CPSL decomposes each frame into a small set of geometry-consistent layers equipped with soft alpha bands and an edge-depth cache that jointly preserve occlusion ordering and boundary continuity. These lightweight, 2D-encodable assets enable parallax-corrected novel-view synthesis via depth-weighted warping and front-to-back alpha compositing, bypassing expensive 3D reconstruction. Temporally, CPSL maintains inter-frame coherence using motion-guided propagation and per-layer encoding, supporting real-time playback with standard video codecs. Across multiple benchmarks, CPSL achieves superior perceptual quality and boundary fidelity compared with layer-based and neural-field baselines while reducing storage and rendering cost by several folds. Our approach offer a practical path from 2D video to scalable 2.5D immersive media.
Abstract:Deep neural networks (DNNs) are used in many applications, but their large size and high computational cost make them hard to run on devices with limited resources. Two widely used techniques to address this challenge are weight quantization, which lowers the precision of all weights, and structured sparsity, which removes unimportant weights while retaining the important ones at full precision. Although both are effective individually, they are typically studied in isolation due to their compounded negative impact on model accuracy when combined. In this work, we introduce SLOPE Structured Sparsity at Low Precision), a unified framework, to effectively combine structured sparsity and low-bit quantization in a principled way. We show that naively combining sparsity and quantization severely harms performance due to the compounded impact of both techniques. To address this, we propose a training-time regularization strategy that minimizes the discrepancy between full-precision weights and their sparse, quantized counterparts by promoting angular alignment rather than direct matching. On ResNet-18, SLOPE achieves $\sim20\times$ model size reduction while retaining $\sim$99% of the original accuracy. It consistently outperforms state-of-the-art quantization and structured sparsity methods across classification, detection, and segmentation tasks on models such as ResNet-18, ViT-Small, and Mask R-CNN.
Abstract:Multimedia systems underpin modern digital interactions, facilitating seamless integration and optimization of resources across diverse multimedia applications. To meet growing personalization demands, multimedia systems must efficiently manage competing resource needs, adaptive content, and user-specific data handling. This paper introduces Generative Flow Networks (GFlowNets, GFNs) as a brave new framework for enabling personalized multimedia systems. By integrating multi-candidate generative modeling with flow-based principles, GFlowNets offer a scalable and flexible solution for enhancing user-specific multimedia experiences. To illustrate the effectiveness of GFlowNets, we focus on short video feeds, a multimedia application characterized by high personalization demands and significant resource constraints, as a case study. Our proposed GFlowNet-based personalized feeds algorithm demonstrates superior performance compared to traditional rule-based and reinforcement learning methods across critical metrics, including video quality, resource utilization efficiency, and delivery cost. Moreover, we propose a unified GFlowNet-based framework generalizable to other multimedia systems, highlighting its adaptability and wide-ranging applicability. These findings underscore the potential of GFlowNets to advance personalized multimedia systems by addressing complex optimization challenges and supporting sophisticated multimedia application scenarios.