Abstract:Dataset distillation (DD) has emerged as a powerful paradigm for dataset compression, enabling the synthesis of compact surrogate datasets that approximate the training utility of large-scale ones. While significant progress has been achieved in distilling image datasets, extending DD to the video domain remains challenging due to the high dimensionality and temporal complexity inherent in video data. Existing video distillation (VD) methods often suffer from excessive computational costs and struggle to preserve temporal dynamics, as na\"ive extensions of image-based approaches typically lead to degraded performance. In this paper, we propose a novel uni-level video dataset distillation framework that directly optimizes synthetic videos with respect to a pre-trained model. To address temporal redundancy and enhance motion preservation, we introduce a temporal saliency-guided filtering mechanism that leverages inter-frame differences to guide the distillation process, encouraging the retention of informative temporal cues while suppressing frame-level redundancy. Extensive experiments on standard video benchmarks demonstrate that our method achieves state-of-the-art performance, bridging the gap between real and distilled video data and offering a scalable solution for video dataset compression.
Abstract:As 3D Gaussian Splatting (3DGS) emerges as a breakthrough in scene representation and novel view synthesis, its rapid adoption in safety-critical domains (e.g., autonomous systems, AR/VR) urgently demands scrutiny of potential security vulnerabilities. This paper presents the first systematic study of backdoor threats in 3DGS pipelines. We identify that adversaries may implant backdoor views to induce malicious scene confusion during inference, potentially leading to environmental misperception in autonomous navigation or spatial distortion in immersive environments. To uncover this risk, we propose GuassTrap, a novel poisoning attack method targeting 3DGS models. GuassTrap injects malicious views at specific attack viewpoints while preserving high-quality rendering in non-target views, ensuring minimal detectability and maximizing potential harm. Specifically, the proposed method consists of a three-stage pipeline (attack, stabilization, and normal training) to implant stealthy, viewpoint-consistent poisoned renderings in 3DGS, jointly optimizing attack efficacy and perceptual realism to expose security risks in 3D rendering. Extensive experiments on both synthetic and real-world datasets demonstrate that GuassTrap can effectively embed imperceptible yet harmful backdoor views while maintaining high-quality rendering in normal views, validating its robustness, adaptability, and practical applicability.
Abstract:Dataset distillation offers an efficient way to reduce memory and computational costs by optimizing a smaller dataset with performance comparable to the full-scale original. However, for large datasets and complex deep networks (e.g., ImageNet-1K with ResNet-101), the extensive optimization space limits performance, reducing its practicality. Recent approaches employ pre-trained diffusion models to generate informative images directly, avoiding pixel-level optimization and achieving notable results. However, these methods often face challenges due to distribution shifts between pre-trained models and target datasets, along with the need for multiple distillation steps across varying settings. To address these issues, we propose a novel framework orthogonal to existing diffusion-based distillation methods, leveraging diffusion models for selection rather than generation. Our method starts by predicting noise generated by the diffusion model based on input images and text prompts (with or without label text), then calculates the corresponding loss for each pair. With the loss differences, we identify distinctive regions of the original images. Additionally, we perform intra-class clustering and ranking on selected patches to maintain diversity constraints. This streamlined framework enables a single-step distillation process, and extensive experiments demonstrate that our approach outperforms state-of-the-art methods across various metrics.