Abstract:Video action recognition (VAR) plays crucial roles in various domains such as surveillance, healthcare, and industrial automation, making it highly significant for the society. Consequently, it has long been a research spot in the computer vision field. As artificial neural networks (ANNs) are flourishing, convolution neural networks (CNNs), including 2D-CNNs and 3D-CNNs, as well as variants of the vision transformer (ViT), have shown impressive performance on VAR. However, they usually demand huge computational cost due to the large data volume and heavy information redundancy introduced by the temporal dimension. To address this challenge, some researchers have turned to brain-inspired spiking neural networks (SNNs), such as recurrent SNNs and ANN-converted SNNs, leveraging their inherent temporal dynamics and energy efficiency. Yet, current SNNs for VAR also encounter limitations, such as nontrivial input preprocessing, intricate network construction/training, and the need for repetitive processing of the same video clip, hindering their practical deployment. In this study, we innovatively propose the directly trained SVFormer (Spiking Video transFormer) for VAR. SVFormer integrates local feature extraction, global self-attention, and the intrinsic dynamics, sparsity, and spike-driven nature of SNNs, to efficiently and effectively extract spatio-temporal features. We evaluate SVFormer on two RGB datasets (UCF101, NTU-RGBD60) and one neuromorphic dataset (DVS128-Gesture), demonstrating comparable performance to the mainstream models in a more efficient way. Notably, SVFormer achieves a top-1 accuracy of 84.03% with ultra-low power consumption (21 mJ/video) on UCF101, which is state-of-the-art among directly trained deep SNNs, showcasing significant advantages over prior models.
Abstract:This paper introduces Grounding DINO 1.5, a suite of advanced open-set object detection models developed by IDEA Research, which aims to advance the "Edge" of open-set object detection. The suite encompasses two models: Grounding DINO 1.5 Pro, a high-performance model designed for stronger generalization capability across a wide range of scenarios, and Grounding DINO 1.5 Edge, an efficient model optimized for faster speed demanded in many applications requiring edge deployment. The Grounding DINO 1.5 Pro model advances its predecessor by scaling up the model architecture, integrating an enhanced vision backbone, and expanding the training dataset to over 20 million images with grounding annotations, thereby achieving a richer semantic understanding. The Grounding DINO 1.5 Edge model, while designed for efficiency with reduced feature scales, maintains robust detection capabilities by being trained on the same comprehensive dataset. Empirical results demonstrate the effectiveness of Grounding DINO 1.5, with the Grounding DINO 1.5 Pro model attaining a 54.3 AP on the COCO detection benchmark and a 55.7 AP on the LVIS-minival zero-shot transfer benchmark, setting new records for open-set object detection. Furthermore, the Grounding DINO 1.5 Edge model, when optimized with TensorRT, achieves a speed of 75.2 FPS while attaining a zero-shot performance of 36.2 AP on the LVIS-minival benchmark, making it more suitable for edge computing scenarios. Model examples and demos with API will be released at https://github.com/IDEA-Research/Grounding-DINO-1.5-API
Abstract:Spiking neural networks (SNNs) offer a promising energy-efficient alternative to artificial neural networks (ANNs), in virtue of their high biological plausibility, rich spatial-temporal dynamics, and event-driven computation. The direct training algorithms based on the surrogate gradient method provide sufficient flexibility to design novel SNN architectures and explore the spatial-temporal dynamics of SNNs. According to previous studies, the performance of models is highly dependent on their sizes. Recently, direct training deep SNNs have achieved great progress on both neuromorphic datasets and large-scale static datasets. Notably, transformer-based SNNs show comparable performance with their ANN counterparts. In this paper, we provide a new perspective to summarize the theories and methods for training deep SNNs with high performance in a systematic and comprehensive way, including theory fundamentals, spiking neuron models, advanced SNN models and residual architectures, software frameworks and neuromorphic hardware, applications, and future trends. The reviewed papers are collected at https://github.com/zhouchenlin2096/Awesome-Spiking-Neural-Networks
Abstract:Spiking Transformers, which integrate Spiking Neural Networks (SNNs) with Transformer architectures, have attracted significant attention due to their potential for energy efficiency and high performance. However, existing models in this domain still suffer from suboptimal performance. We introduce several innovations to improve the performance: i) We propose a novel spike-form Q-K attention mechanism, tailored for SNNs, which efficiently models the importance of token or channel dimensions through binary vectors with linear complexity. ii) We incorporate the hierarchical structure, which significantly benefits the performance of both the brain and artificial neural networks, into spiking transformers to obtain multi-scale spiking representation. iii) We design a versatile and powerful patch embedding module with a deformed shortcut specifically for spiking transformers. Together, we develop QKFormer, a hierarchical spiking transformer based on Q-K attention with direct training. QKFormer shows significantly superior performance over existing state-of-the-art SNN models on various mainstream datasets. Notably, with comparable size to Spikformer (66.34 M, 74.81%), QKFormer (64.96 M) achieves a groundbreaking top-1 accuracy of 85.65% on ImageNet-1k, substantially outperforming Spikformer by 10.84%. To our best knowledge, this is the first time that directly training SNNs have exceeded 85% accuracy on ImageNet-1K. The code and models are publicly available at https://github.com/zhouchenlin2096/QKFormer
Abstract:Reconstructing natural language from non-invasive electroencephalography (EEG) holds great promise as a language decoding technology for brain-computer interfaces (BCIs). However, EEG-based language decoding is still in its nascent stages, facing several technical issues such as: 1) Absence of a hybrid strategy that can effectively integrate cross-modality (between EEG and text) self-learning with intra-modality self-reconstruction of EEG features or textual sequences; 2) Under-utilization of large language models (LLMs) to enhance EEG-based language decoding. To address above issues, we propose the Contrastive EEG-Text Masked Autoencoder (CET-MAE), a novel model that orchestrates compound self-supervised learning across and within EEG and text through a dedicated multi-stream encoder. Furthermore, we develop a framework called E2T-PTR (EEG-to-Text decoding using Pretrained Transferable Representations), which leverages pre-trained modules alongside the EEG stream from CET-MAE and further enables an LLM (specifically BART) to decode text from EEG sequences. Comprehensive experiments conducted on the popular text-evoked EEG database, ZuCo, demonstrate the superiority of E2T-PTR, which outperforms the state-of-the-art in ROUGE-1 F1 and BLEU-4 scores by 8.34% and 32.21%, respectively. These results indicate significant advancements in the field and underscores the proposed framework's potential to enable more powerful and widespread BCI applications.
Abstract:The integration of self-attention mechanisms into Spiking Neural Networks (SNNs) has garnered considerable interest in the realm of advanced deep learning, primarily due to their biological properties. Recent advancements in SNN architecture, such as Spikformer, have demonstrated promising outcomes by leveraging Spiking Self-Attention (SSA) and Spiking Patch Splitting (SPS) modules. However, we observe that Spikformer may exhibit excessive energy consumption, potentially attributable to redundant channels and blocks. To mitigate this issue, we propose Auto-Spikformer, a one-shot Transformer Architecture Search (TAS) method, which automates the quest for an optimized Spikformer architecture. To facilitate the search process, we propose methods Evolutionary SNN neurons (ESNN), which optimizes the SNN parameters, and apply the previous method of weight entanglement supernet training, which optimizes the Vision Transformer (ViT) parameters. Moreover, we propose an accuracy and energy balanced fitness function $\mathcal{F}_{AEB}$ that jointly considers both energy consumption and accuracy, and aims to find a Pareto optimal combination that balances these two objectives. Our experimental results demonstrate the effectiveness of Auto-Spikformer, which outperforms the state-of-the-art method including CNN or ViT models that are manually or automatically designed while significantly reducing energy consumption.
Abstract:Biologically inspired spiking neural networks (SNNs) have garnered considerable attention due to their low-energy consumption and spatio-temporal information processing capabilities. Most existing SNNs training methods first integrate output information across time steps, then adopt the cross-entropy (CE) loss to supervise the prediction of the average representations. However, in this work, we find the method above is not ideal for the SNNs training as it omits the temporal dynamics of SNNs and degrades the performance quickly with the decrease of inference time steps. One tempting method to model temporal correlations is to apply the same label supervision at each time step and treat them identically. Although it can acquire relatively consistent performance across various time steps, it still faces challenges in obtaining SNNs with high performance. Inspired by these observations, we propose Temporal-domain supervised Contrastive Learning (TCL) framework, a novel method to obtain SNNs with low latency and high performance by incorporating contrastive supervision with temporal domain information. Contrastive learning (CL) prompts the network to discern both consistency and variability in the representation space, enabling it to better learn discriminative and generalizable features. We extend this concept to the temporal domain of SNNs, allowing us to flexibly and fully leverage the correlation between representations at different time steps. Furthermore, we propose a Siamese Temporal-domain supervised Contrastive Learning (STCL) framework to enhance the SNNs via augmentation, temporal and class constraints simultaneously. Extensive experimental results demonstrate that SNNs trained by our TCL and STCL can achieve both high performance and low latency, achieving state-of-the-art performance on a variety of datasets (e.g., CIFAR-10, CIFAR-100, and DVS-CIFAR10).
Abstract:Deep spiking neural networks (SNNs) have drawn much attention in recent years because of their low power consumption, biological rationality and event-driven property. However, state-of-the-art deep SNNs (including Spikformer and Spikingformer) suffer from a critical challenge related to the imprecise gradient backpropagation. This problem arises from the improper design of downsampling modules in these networks, and greatly hampering the overall model performance. In this paper, we propose ConvBN-MaxPooling-LIF (CML), an SNN-optimized downsampling with precise gradient backpropagation. We prove that CML can effectively overcome the imprecision of gradient backpropagation from a theoretical perspective. In addition, we evaluate CML on ImageNet, CIFAR10, CIFAR100, CIFAR10-DVS, DVS128-Gesture datasets, and show state-of-the-art performance on all these datasets with significantly enhanced performances compared with Spikingformer. For instance, our model achieves 77.64 $\%$ on ImageNet, 96.04 $\%$ on CIFAR10, 81.4$\%$ on CIFAR10-DVS, with + 1.79$\%$ on ImageNet, +1.16$\%$ on CIFAR100 compared with Spikingformer.
Abstract:Deep learning needs high-precision handling of forwarding signals, backpropagating errors, and updating weights. This is inherently required by the learning algorithm since the gradient descent learning rule relies on the chain product of partial derivatives. However, it is challenging to implement deep learning in hardware systems that use noisy analog memristors as artificial synapses, as well as not being biologically plausible. Memristor-based implementations generally result in an excessive cost of neuronal circuits and stringent demands for idealized synaptic devices. Here, we demonstrate that the requirement for high precision is not necessary and that more efficient deep learning can be achieved when this requirement is lifted. We propose a binary stochastic learning algorithm that modifies all elementary neural network operations, by introducing (i) stochastic binarization of both the forwarding signals and the activation function derivatives, (ii) signed binarization of the backpropagating errors, and (iii) step-wised weight updates. Through an extensive hybrid approach of software simulation and hardware experiments, we find that binary stochastic deep learning systems can provide better performance than the software-based benchmarks using the high-precision learning algorithm. Also, the binary stochastic algorithm strongly simplifies the neural network operations in hardware, resulting in an improvement of the energy efficiency for the multiply-and-accumulate operations by more than three orders of magnitudes.
Abstract:Vanilla spiking neurons in Spiking Neural Networks (SNNs) use charge-fire-reset neuronal dynamics, which can only be simulated in serial and can hardly learn long-time dependencies. We find that when removing reset, the neuronal dynamics are reformulated in a non-iterative form and can be parallelized. By rewriting neuronal dynamics without resetting to a general formulation, we propose the Parallel Spiking Neuron (PSN), which uses dense connections between time-steps to maximize the utilization of temporal information. To avoid the use of future inputs for low-latency inference, we add masks on the weights and obtain the masked PSN. By sharing weights across time-steps, the sliding PSN is proposed with the ability to deal with sequences with variant lengths. We evaluate the PSN family on simulation speed and temporal/static data classification, and the results show the overwhelming advantage of the PSN family in efficiency and accuracy. To our best knowledge, this is the first research about parallelizing spiking neurons and can be a cornerstone for the spiking deep learning community. Our codes are available at \url{https://github.com/fangwei123456/Parallel-Spiking-Neuron}.