Alert button
Picture for Dongyan Zhao

Dongyan Zhao

Alert button

A Step Closer to Comprehensive Answers: Constrained Multi-Stage Question Decomposition with Large Language Models

Nov 13, 2023
Hejing Cao, Zhenwei An, Jiazhan Feng, Kun Xu, Liwei Chen, Dongyan Zhao

While large language models exhibit remarkable performance in the Question Answering task, they are susceptible to hallucinations. Challenges arise when these models grapple with understanding multi-hop relations in complex questions or lack the necessary knowledge for a comprehensive response. To address this issue, we introduce the "Decompose-and-Query" framework (D&Q). This framework guides the model to think and utilize external knowledge similar to ReAct, while also restricting its thinking to reliable information, effectively mitigating the risk of hallucinations. Experiments confirm the effectiveness of D&Q: On our ChitChatQA dataset, D&Q does not lose to ChatGPT in 67% of cases; on the HotPotQA question-only setting, D&Q achieved an F1 score of 59.6%. Our code is available at https://github.com/alkaidpku/DQ-ToolQA.

Viaarxiv icon

Language Models can be Logical Solvers

Nov 10, 2023
Jiazhan Feng, Ruochen Xu, Junheng Hao, Hiteshi Sharma, Yelong Shen, Dongyan Zhao, Weizhu Chen

Logical reasoning is a fundamental aspect of human intelligence and a key component of tasks like problem-solving and decision-making. Recent advancements have enabled Large Language Models (LLMs) to potentially exhibit reasoning capabilities, but complex logical reasoning remains a challenge. The state-of-the-art, solver-augmented language models, use LLMs to parse natural language logical questions into symbolic representations first and then adopt external logical solvers to take in the symbolic representations and output the answers. Despite their impressive performance, any parsing errors will inevitably result in the failure of the execution of the external logical solver and no answer to the logical questions. In this paper, we introduce LoGiPT, a novel language model that directly emulates the reasoning processes of logical solvers and bypasses the parsing errors by learning to strict adherence to solver syntax and grammar. LoGiPT is fine-tuned on a newly constructed instruction-tuning dataset derived from revealing and refining the invisible reasoning process of deductive solvers. Experimental results on two public deductive reasoning datasets demonstrate that LoGiPT outperforms state-of-the-art solver-augmented LMs and few-shot prompting methods on competitive LLMs like ChatGPT or GPT-4.

* Preprint 
Viaarxiv icon

PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task Completion

Nov 07, 2023
Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao, Nan Duan

Recent evaluations of Large Language Models (LLMs) have centered around testing their zero-shot/few-shot capabilities for basic natural language tasks and their ability to translate instructions into tool APIs. However, the evaluation of LLMs utilizing complex tools to finish multi-turn, multi-modal instructions in a complex multi-modal environment has not been investigated. To address this gap, we introduce the PowerPoint Task Completion (PPTC) benchmark to assess LLMs' ability to create and edit PPT files based on user instructions. It contains 279 multi-turn sessions covering diverse topics and hundreds of instructions involving multi-modal operations. We also propose the PPTX-Match Evaluation System that evaluates if LLMs finish the instruction based on the prediction file rather than the label API sequence, thus it supports various LLM-generated API sequences. We measure 3 closed LLMs and 6 open-source LLMs. The results show that GPT-4 outperforms other LLMs with 75.1\% accuracy in single-turn dialogue testing but faces challenges in completing entire sessions, achieving just 6\% session accuracy. We find three main error causes in our benchmark: error accumulation in the multi-turn session, long PPT template processing, and multi-modality perception. These pose great challenges for future LLM and agent systems. We release the data, code, and evaluation system of PPTC at \url{https://github.com/gydpku/PPTC}.

* LLM evaluation, PPT task completion 
Viaarxiv icon

Improving Input-label Mapping with Demonstration Replay for In-context Learning

Oct 30, 2023
Zhuocheng Gong, Jiahao Liu, Qifan Wang, Jingang Wang, Xunliang Cai, Dongyan Zhao, Rui Yan

In-context learning (ICL) is an emerging capability of large autoregressive language models where a few input-label demonstrations are appended to the input to enhance the model's understanding of downstream NLP tasks, without directly adjusting the model parameters. The effectiveness of ICL can be attributed to the strong language modeling capabilities of large language models (LLMs), which enable them to learn the mapping between input and labels based on in-context demonstrations. Despite achieving promising results, the causal nature of language modeling in ICL restricts the attention to be backward only, i.e., a token only attends to its previous tokens, failing to capture the full input-label information and limiting the model's performance. In this paper, we propose a novel ICL method called Repeated Demonstration with Sliding Causal Attention, (RdSca). Specifically, we duplicate later demonstrations and concatenate them to the front, allowing the model to `observe' the later information even under the causal restriction. Besides, we introduce sliding causal attention, which customizes causal attention to avoid information leakage. Experimental results show that our method significantly improves the input-label mapping in ICL demonstrations. We also conduct an in-depth analysis of how to customize the causal attention without training, which has been an unexplored area in previous research.

Viaarxiv icon

From Simple to Complex: A Progressive Framework for Document-level Informative Argument Extraction

Oct 25, 2023
Quzhe Huang, Yanxi Zhang, Dongyan Zhao

Document-level Event Argument Extraction (EAE) requires the model to extract arguments of multiple events from a single document. Considering the underlying dependencies between these events, recent efforts leverage the idea of "memory", where the results of already predicted events are cached and can be retrieved to help the prediction of upcoming events. These methods extract events according to their appearance order in the document, however, the event that appears in the first sentence does not mean that it is the easiest to extract. Existing methods might introduce noise to the extraction of upcoming events if they rely on an incorrect prediction of previous events. In order to provide more reliable memory, we propose a simple-to-complex progressive framework for document-level EAE. Specifically, we first calculate the difficulty of each event and then, we conduct the extraction following a simple-to-complex order. In this way, the memory will store the most certain results, and the model could use these reliable sources to help the prediction of more difficult events. Experiments on WikiEvents show that our model outperforms SOTA by 1.4% in F1, indicating the proposed simple-to-complex framework is useful in the EAE task.

* Accepted to the Findings of EMNLP 2023 (Long Paper) 
Viaarxiv icon

Retrieval-based Knowledge Transfer: An Effective Approach for Extreme Large Language Model Compression

Oct 24, 2023
Jiduan Liu, Jiahao Liu, Qifan Wang, Jingang Wang, Xunliang Cai, Dongyan Zhao, Ran Lucien Wang, Rui Yan

Figure 1 for Retrieval-based Knowledge Transfer: An Effective Approach for Extreme Large Language Model Compression
Figure 2 for Retrieval-based Knowledge Transfer: An Effective Approach for Extreme Large Language Model Compression
Figure 3 for Retrieval-based Knowledge Transfer: An Effective Approach for Extreme Large Language Model Compression
Figure 4 for Retrieval-based Knowledge Transfer: An Effective Approach for Extreme Large Language Model Compression

Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks. However, the massive size of these models poses huge challenges for their deployment in real-world applications. While numerous model compression techniques have been proposed, most of them are not well-suited for achieving extreme model compression when there is a significant gap in model scale. In this paper, we introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT), which effectively transfers the knowledge of LLMs to extremely small-scale models (e.g., 1%). In particular, our approach extracts knowledge from LLMs to construct a knowledge store, from which the small-scale model can retrieve relevant information and leverage it for effective inference. To improve the quality of the model, soft prompt tuning and Proximal Policy Optimization (PPO) reinforcement learning techniques are employed. Extensive experiments are conducted on low-resource tasks from SuperGLUE and GLUE benchmarks. The results demonstrate that the proposed approach significantly enhances the performance of small-scale models by leveraging the knowledge from LLMs.

* EMNLP 2023 Findings 
Viaarxiv icon

SCALE: Synergized Collaboration of Asymmetric Language Translation Engines

Sep 29, 2023
Xin Cheng, Xun Wang, Tao Ge, Si-Qing Chen, Furu Wei, Dongyan Zhao, Rui Yan

Figure 1 for SCALE: Synergized Collaboration of Asymmetric Language Translation Engines
Figure 2 for SCALE: Synergized Collaboration of Asymmetric Language Translation Engines
Figure 3 for SCALE: Synergized Collaboration of Asymmetric Language Translation Engines
Figure 4 for SCALE: Synergized Collaboration of Asymmetric Language Translation Engines

In this paper, we introduce SCALE, a collaborative framework that connects compact Specialized Translation Models (STMs) and general-purpose Large Language Models (LLMs) as one unified translation engine. By introducing translation from STM into the triplet in-context demonstrations, SCALE unlocks refinement and pivoting ability of LLM, thus mitigating language bias of LLM and parallel data bias of STM, enhancing LLM speciality without sacrificing generality, and facilitating continual learning without expensive LLM fine-tuning. Our comprehensive experiments show that SCALE significantly outperforms both few-shot LLMs (GPT-4) and specialized models (NLLB) in challenging low-resource settings. Moreover, in Xhosa to English translation, SCALE experiences consistent improvement by a 4 BLEURT score without tuning LLM and surpasses few-shot GPT-4 by 2.5 COMET score and 3.8 BLEURT score when equipped with a compact model consisting of merely 600M parameters. SCALE could also effectively exploit the existing language bias of LLMs by using an English-centric STM as a pivot for translation between any language pairs, outperforming few-shot GPT-4 by an average of 6 COMET points across eight translation directions. Furthermore we provide an in-depth analysis of SCALE's robustness, translation characteristics, and latency costs, providing solid foundation for future studies exploring the potential synergy between LLMs and more specialized, task-specific models.

Viaarxiv icon

Teaching Text-to-Image Models to Communicate

Sep 27, 2023
Xiaowen Sun, Jiazhan Feng, Yuxuan Wang, Yuxuan Lai, Xingyu Shen, Dongyan Zhao

Various works have been extensively studied in the research of text-to-image generation. Although existing models perform well in text-to-image generation, there are significant challenges when directly employing them to generate images in dialogs. In this paper, we first highlight a new problem: dialog-to-image generation, that is, given the dialog context, the model should generate a realistic image which is consistent with the specified conversation as response. To tackle the problem, we propose an efficient approach for dialog-to-image generation without any intermediate translation, which maximizes the extraction of the semantic information contained in the dialog. Considering the characteristics of dialog structure, we put segment token before each sentence in a turn of a dialog to differentiate different speakers. Then, we fine-tune pre-trained text-to-image models to enable them to generate images conditioning on processed dialog context. After fine-tuning, our approach can consistently improve the performance of various models across multiple metrics. Experimental results on public benchmark demonstrate the effectiveness and practicability of our method.

* Work in progress 
Viaarxiv icon

CharacterChat: Learning towards Conversational AI with Personalized Social Support

Aug 20, 2023
Quan Tu, Chuanqi Chen, Jinpeng Li, Yanran Li, Shuo Shang, Dongyan Zhao, Ran Wang, Rui Yan

Figure 1 for CharacterChat: Learning towards Conversational AI with Personalized Social Support
Figure 2 for CharacterChat: Learning towards Conversational AI with Personalized Social Support
Figure 3 for CharacterChat: Learning towards Conversational AI with Personalized Social Support
Figure 4 for CharacterChat: Learning towards Conversational AI with Personalized Social Support

In our modern, fast-paced, and interconnected world, the importance of mental well-being has grown into a matter of great urgency. However, traditional methods such as Emotional Support Conversations (ESC) face challenges in effectively addressing a diverse range of individual personalities. In response, we introduce the Social Support Conversation (S2Conv) framework. It comprises a series of support agents and the interpersonal matching mechanism, linking individuals with persona-compatible virtual supporters. Utilizing persona decomposition based on the MBTI (Myers-Briggs Type Indicator), we have created the MBTI-1024 Bank, a group that of virtual characters with distinct profiles. Through improved role-playing prompts with behavior preset and dynamic memory, we facilitate the development of the MBTI-S2Conv dataset, which contains conversations between the characters in the MBTI-1024 Bank. Building upon these foundations, we present CharacterChat, a comprehensive S2Conv system, which includes a conversational model driven by personas and memories, along with an interpersonal matching plugin model that dispatches the optimal supporters from the MBTI-1024 Bank for individuals with specific personas. Empirical results indicate the remarkable efficacy of CharacterChat in providing personalized social support and highlight the substantial advantages derived from interpersonal matching. The source code is available in \url{https://github.com/morecry/CharacterChat}.

* 10 pages, 6 figures, 5 tables 
Viaarxiv icon