Abstract:Three-dimensional digital urban reconstruction from multi-view aerial images is a critical application where deep multi-view stereo (MVS) methods outperform traditional techniques. However, existing methods commonly overlook the key differences between aerial and close-range settings, such as varying depth ranges along epipolar lines and insensitive feature-matching associated with low-detailed aerial images. To address these issues, we propose an Adaptive Depth Range MVS (ADR-MVS), which integrates monocular geometric cues to improve multi-view depth estimation accuracy. The key component of ADR-MVS is the depth range predictor, which generates adaptive range maps from depth and normal estimates using cross-attention discrepancy learning. In the first stage, the range map derived from monocular cues breaks through predefined depth boundaries, improving feature-matching discriminability and mitigating convergence to local optima. In later stages, the inferred range maps are progressively narrowed, ultimately aligning with the cascaded MVS framework for precise depth regression. Moreover, a normal-guided cost aggregation operation is specially devised for aerial stereo images to improve geometric awareness within the cost volume. Finally, we introduce a normal-guided depth refinement module that surpasses existing RGB-guided techniques. Experimental results demonstrate that ADR-MVS achieves state-of-the-art performance on the WHU, LuoJia-MVS, and M\"unchen datasets, while exhibits superior computational complexity.
Abstract:Guided depth super-resolution (GDSR) has demonstrated impressive performance across a wide range of domains, with numerous methods being proposed. However, existing methods often treat depth maps as images, where shading values are computed discretely, making them struggle to effectively restore the continuity inherent in the depth map. In this paper, we propose a novel approach that maximizes the utilization of spatial characteristics in depth, coupled with human abstract perception of real-world substance, by transforming the GDSR issue into deformation of a roughcast with ideal plasticity, which can be deformed by force like a continuous object. Specifically, we firstly designed a cross-modal operation, Continuity-constrained Asymmetrical Pixelwise Operation (CAPO), which can mimic the process of deforming an isovolumetrically flexible object through external forces. Utilizing CAPO as the fundamental component, we develop the Pixelwise Cross Gradient Deformation (PCGD), which is capable of emulating operations on ideal plastic objects (without volume constraint). Notably, our approach demonstrates state-of-the-art performance across four widely adopted benchmarks for GDSR, with significant advantages in large-scale tasks and generalizability.