Abstract:Large language models (LLMs) have recently shown strong performance as zero-shot rankers, yet their effectiveness is highly sensitive to prompt formulation, particularly role-play instructions. Prior analyses suggest that role-related signals are encoded along activation channels that are largely separate from query-document representations, raising the possibility of steering ranking behavior directly at the activation level rather than through brittle prompt engineering. In this work, we propose RankSteer, a post-hoc activation steering framework for zero-shot pointwise LLM ranking. We characterize ranking behavior through three disentangled and steerable directions in representation space: a \textbf{decision direction} that maps hidden states to relevance scores, an \textbf{evidence direction} that captures relevance signals not directly exploited by the decision head, and a \textbf{role direction} that modulates model behavior without injecting relevance information. Using projection-based interventions at inference time, RankSteer jointly controls these directions to calibrate ranking behavior without modifying model weights or introducing explicit cross-document comparisons. Experiments on TREC DL 20 and multiple BEIR benchmarks show that RankSteer consistently improves ranking quality using only a small number of anchor queries, demonstrating that substantial ranking capacity remains under-utilized in pointwise LLM rankers. We further provide a geometric analysis revealing that steering improves ranking by stabilizing ranking geometry and reducing dispersion, offering new insight into how LLMs internally represent and calibrate relevance judgments.
Abstract:Unlike short-form retrieval-augmented generation (RAG), such as factoid question answering, long-form RAG requires retrieval to provide documents covering a wide range of relevant information. Automated report generation exemplifies this setting: it requires not only relevant information but also a more elaborate response with comprehensive information. Yet, existing retrieval methods are primarily optimized for relevance ranking rather than information coverage. To address this limitation, we propose LANCER, an LLM-based reranking method for nugget coverage. LANCER predicts what sub-questions should be answered to satisfy an information need, predicts which documents answer these sub-questions, and reranks documents in order to provide a ranked list covering as many information nuggets as possible. Our empirical results show that LANCER enhances the quality of retrieval as measured by nugget coverage metrics, achieving higher $α$-nDCG and information coverage than other LLM-based reranking methods. Our oracle analysis further reveals that sub-question generation plays an essential role.
Abstract:Generative recommendation provides a novel paradigm in which each item is represented by a discrete semantic ID (SID) learned from rich content. Most existing methods treat SIDs as predefined and train recommenders under static indexing. In practice, SIDs are typically optimized only for content reconstruction rather than recommendation accuracy. This leads to an objective mismatch: the system optimizes an indexing loss to learn the SID and a recommendation loss for interaction prediction, but because the tokenizer is trained independently, the recommendation loss cannot update it. A natural approach is to make semantic indexing differentiable so that recommendation gradients can directly influence SID learning, but this often causes codebook collapse, where only a few codes are used. We attribute this issue to early deterministic assignments that limit codebook exploration, resulting in imbalance and unstable optimization. In this paper, we propose DIGER (Differentiable Semantic ID for Generative Recommendation), a first step toward effective differentiable semantic IDs for generative recommendation. DIGER introduces Gumbel noise to explicitly encourage early-stage exploration over codes, mitigating codebook collapse and improving code utilization. To balance exploration and convergence, we further design two uncertainty decay strategies that gradually reduce the Gumbel noise, enabling a smooth transition from early exploration to exploitation of learned SIDs. Extensive experiments on multiple public datasets demonstrate consistent improvements from differentiable semantic IDs. These results confirm the effectiveness of aligning indexing and recommendation objectives through differentiable SIDs and highlight differentiable semantic indexing as a promising research direction.
Abstract:This study investigates the use of neural topic modeling and LLMs to uncover meaningful themes from patient storytelling data, to offer insights that could contribute to more patient-oriented healthcare practices. We analyze a collection of transcribed interviews with cancer patients (132,722 words in 13 interviews). We first evaluate BERTopic and Top2Vec for individual interview summarization by using similar preprocessing, chunking, and clustering configurations to ensure a fair comparison on Keyword Extraction. LLMs (GPT4) are then used for the next step topic labeling. Their outputs for a single interview (I0) are rated through a small-scale human evaluation, focusing on {coherence}, {clarity}, and {relevance}. Based on the preliminary results and evaluation, BERTopic shows stronger performance and is selected for further experimentation using three {clinically oriented embedding} models. We then analyzed the full interview collection with the best model setting. Results show that domain-specific embeddings improved topic \textit{precision} and \textit{interpretability}, with BioClinicalBERT producing the most consistent results across transcripts. The global analysis of the full dataset of 13 interviews, using the BioClinicalBERT embedding model, reveals the most dominant topics throughout all 13 interviews, namely ``Coordination and Communication in Cancer Care Management" and ``Patient Decision-Making in Cancer Treatment Journey''. Although the interviews are machine translations from Dutch to English, and clinical professionals are not involved in this evaluation, the findings suggest that neural topic modeling, particularly BERTopic, can help provide useful feedback to clinicians from patient interviews. This pipeline could support more efficient document navigation and strengthen the role of patients' voices in healthcare workflows.
Abstract:Search and recommendation (S&R) are core to online platforms, addressing explicit intent through queries and modeling implicit intent from behaviors, respectively. Their complementary roles motivate a unified modeling paradigm. Early studies to unify S&R adopt shared encoders with task-specific heads, while recent efforts reframe item ranking in both S&R as conditional generation. The latter holds particular promise, enabling end-to-end optimization and leveraging the semantic understanding of LLMs. However, existing methods rely on full fine-tuning, which is computationally expensive and limits scalability. Parameter-efficient fine-tuning (PEFT) offers a more practical alternative but faces two critical challenges in unifying S&R: (1) gradient conflicts across tasks due to divergent optimization objectives, and (2) shifts in user intent understanding caused by overfitting to fine-tuning data, which distort general-domain knowledge and weaken LLM reasoning. To address the above issues, we propose Gradient Multi-Subspace Tuning (GEMS), a novel framework that unifies S&R with LLMs while alleviating gradient conflicts and preserving general-domain knowledge. GEMS introduces (1) \textbf{Multi-Subspace Decomposition}, which disentangles shared and task-specific optimization signals into complementary low-rank subspaces, thereby reducing destructive gradient interference, and (2) \textbf{Null-Space Projection}, which constrains parameter updates to a subspace orthogonal to the general-domain knowledge space, mitigating shifts in user intent understanding. Extensive experiments on benchmark datasets show that GEMS consistently outperforms the state-of-the-art baselines across both search and recommendation tasks, achieving superior effectiveness.


Abstract:This proposed tutorial focuses on Healthcare Domain Applications of NLP, what we have achieved around HealthcareNLP, and the challenges that lie ahead for the future. Existing reviews in this domain either overlook some important tasks, such as synthetic data generation for addressing privacy concerns, or explainable clinical NLP for improved integration and implementation, or fail to mention important methodologies, including retrieval augmented generation and the neural symbolic integration of LLMs and KGs. In light of this, the goal of this tutorial is to provide an introductory overview of the most important sub-areas of a patient- and resource-oriented HealthcareNLP, with three layers of hierarchy: data/resource layer: annotation guidelines, ethical approvals, governance, synthetic data; NLP-Eval layer: NLP tasks such as NER, RE, sentiment analysis, and linking/coding with categorised methods, leading to explainable HealthAI; patients layer: Patient Public Involvement and Engagement (PPIE), health literacy, translation, simplification, and summarisation (also NLP tasks), and shared decision-making support. A hands-on session will be included in the tutorial for the audience to use HealthcareNLP applications. The target audience includes NLP practitioners in the healthcare application domain, NLP researchers who are interested in domain applications, healthcare researchers, and students from NLP fields. The type of tutorial is "Introductory to CL/NLP topics (HealthcareNLP)" and the audience does not need prior knowledge to attend this. Tutorial materials: https://github.com/4dpicture/HealthNLP




Abstract:Metaphors and metaphorical language (MLs) play an important role in healthcare communication between clinicians, patients, and patients' family members. In this work, we focus on Dutch language data from cancer patients. We extract metaphors used by patients using two data sources: (1) cancer patient storytelling interview data and (2) online forum data, including patients' posts, comments, and questions to professionals. We investigate how current state-of-the-art large language models (LLMs) perform on this task by exploring different prompting strategies such as chain of thought reasoning, few-shot learning, and self-prompting. With a human-in-the-loop setup, we verify the extracted metaphors and compile the outputs into a corpus named HealthQuote.NL. We believe the extracted metaphors can support better patient care, for example shared decision making, improved communication between patients and clinicians, and enhanced patient health literacy. They can also inform the design of personalized care pathways. We share prompts and related resources at https://github.com/aaronlifenghan/HealthQuote.NL




Abstract:Conversational search interfaces, like ChatGPT, offer an interactive, personalized, and engaging user experience compared to traditional search. On the downside, they are prone to cause overtrust issues where users rely on their responses even when they are incorrect. What aspects of the conversational interaction paradigm drive people to adopt it, and how it creates personalized experiences that lead to overtrust, is not clear. To understand the factors influencing the adoption of conversational interfaces, we conducted a survey with 173 participants. We examined user perceptions regarding trust, human-likeness (anthropomorphism), and design preferences between ChatGPT and Google. To better understand the overtrust phenomenon, we asked users about their willingness to trade off factuality for constructs like ease of use or human-likeness. Our analysis identified two distinct user groups: those who use both ChatGPT and Google daily (DUB), and those who primarily rely on Google (DUG). The DUB group exhibited higher trust in ChatGPT, perceiving it as more human-like, and expressed greater willingness to trade factual accuracy for enhanced personalization and conversational flow. Conversely, the DUG group showed lower trust toward ChatGPT but still appreciated aspects like ad-free experiences and responsive interactions. Demographic analysis further revealed nuanced patterns, with middle-aged adults using ChatGPT less frequently yet trusting it more, suggesting potential vulnerability to misinformation. Our findings contribute to understanding user segmentation, emphasizing the critical roles of personalization and human-likeness in conversational IR systems, and reveal important implications regarding users' willingness to compromise factual accuracy for more engaging interactions.
Abstract:Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques. However, effectively enabling LLMs to seek accurate knowledge in complex tasks remains a challenge due to the complexity of multi-hop queries as well as the irrelevant retrieved content. To address these limitations, we propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds through a self-incentivized process. At each step, the LLM decides what to retrieve (thinking), triggers an external retriever (search), and extracts fine-grained evidence (recording) to support next-step reasoning. To enable LLM with this capability, EXSEARCH adopts a Generalized Expectation-Maximization algorithm. In the E-step, the LLM generates multiple search trajectories and assigns an importance weight to each; the M-step trains the LLM on them with a re-weighted loss function. This creates a self-incentivized loop, where the LLM iteratively learns from its own generated data, progressively improving itself for search. We further theoretically analyze this training process, establishing convergence guarantees. Extensive experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines, e.g., +7.8% improvement on exact match score. Motivated by these promising results, we introduce EXSEARCH-Zoo, an extension that extends our method to broader scenarios, to facilitate future work.
Abstract:Recommender systems and search engines serve as foundational elements of online platforms, with the former delivering information proactively and the latter enabling users to seek information actively. Unifying both tasks in a shared model is promising since it can enhance user modeling and item understanding. Previous approaches mainly follow a discriminative paradigm, utilizing shared encoders to process input features and task-specific heads to perform each task. However, this paradigm encounters two key challenges: gradient conflict and manual design complexity. From the information theory perspective, these challenges potentially both stem from the same issue -- low mutual information between the input features and task-specific outputs during the optimization process. To tackle these issues, we propose GenSR, a novel generative paradigm for unifying search and recommendation (S&R), which leverages task-specific prompts to partition the model's parameter space into subspaces, thereby enhancing mutual information. To construct effective subspaces for each task, GenSR first prepares informative representations for each subspace and then optimizes both subspaces in one unified model. Specifically, GenSR consists of two main modules: (1) Dual Representation Learning, which independently models collaborative and semantic historical information to derive expressive item representations; and (2) S&R Task Unifying, which utilizes contrastive learning together with instruction tuning to generate task-specific outputs effectively. Extensive experiments on two public datasets show GenSR outperforms state-of-the-art methods across S&R tasks. Our work introduces a new generative paradigm compared with previous discriminative methods and establishes its superiority from the mutual information perspective.