Abstract:Large language models (LLMs) can be adapted either through numerical updates that alter model parameters or symbolic manipulations that work on discrete prompts or logical constraints. While numerical fine-tuning excels at injecting new factual knowledge, symbolic updates offer flexible control of style and alignment without retraining. We introduce a neurosymbolic LoRA framework that dynamically combines these two complementary strategies. Specifically, we present a unified monitoring signal and a reward-based classifier to decide when to employ LoRA for deeper factual reconstruction and when to apply TextGrad for token-level edits. Our approach remains memory-efficient by offloading the symbolic transformations to an external LLM only when needed. Additionally, the refined prompts produced during symbolic editing serve as high-quality, reusable training data, an important benefit in data-scarce domains like mathematical reasoning. Extensive experiments across multiple LLM backbones show that neurosymbolic LoRA consistently outperforms purely numerical or purely symbolic baselines, demonstrating superior adaptability and improved performance. Our findings highlight the value of interleaving numerical and symbolic updates to unlock a new level of versatility in language model fine-tuning.
Abstract:The detection of underwater targets is severely affected by the non-uniform spatial characteristics of marine environmental noise. Additionally, the presence of both natural and anthropogenic acoustic sources, including shipping traffic, marine life, and geological activity, further complicates the underwater acoustic landscape. Addressing these challenges requires advanced underwater sensors and robust signal processing techniques. In this paper, we present a novel approach that leverages an optical fiber distributed acoustic sensing (DAS) system combined with a broadband generalized sparse covariance-fitting framework for underwater target direction sensing, particularly focusing on robustness against non-uniform noise. The DAS system incorporates a newly developed spiral-sensitized optical cable, which significantly improves sensitivity compared to conventional submarine cables. This innovative design enables the system to capture acoustic signals with greater precision. Notably, the sensitivity of the spiral-wound sensitized cable is around -145.69 dB re: 1 rad / (uPa*m), as measured inside the standing-wave tube. Employing simulations, we assess the performance of the algorithm across diverse noise levels and target configurations, consistently revealing higher accuracy and reduced background noise compared to conventional beamforming techniques and other sparse techniques. In a controlled pool experiment, the correlation coefficient between waveforms acquired by the DAS system and a standard hydrophone reached 0.973, indicating high fidelity in signal capture.
Abstract:Diffusion models have significantly advanced the field of talking head generation. However, the slow inference speeds and non-autoregressive paradigms severely constrain the application of diffusion-based THG models. In this study, we propose REST, the first diffusion-based, real-time, end-to-end streaming audio-driven talking head generation framework. To support real-time end-to-end generation, a compact video latent space is first learned through high spatiotemporal VAE compression. Additionally, to enable autoregressive streaming within the compact video latent space, we introduce an ID-Context Cache mechanism, which integrates ID-Sink and Context-Cache principles to key-value caching for maintaining temporal consistency and identity coherence during long-time streaming generation. Furthermore, an Asynchronous Streaming Distillation (ASD) training strategy is proposed to mitigate error accumulation in autoregressive generation and enhance temporal consistency, which leverages a non-streaming teacher with an asynchronous noise schedule to supervise the training of the streaming student model. REST bridges the gap between autoregressive and diffusion-based approaches, demonstrating substantial value for applications requiring real-time talking head generation. Experimental results demonstrate that REST outperforms state-of-the-art methods in both generation speed and overall performance.
Abstract:Large Language Models (LLMs) have shown significant promise in automated theorem proving, yet progress is often constrained by the scarcity of diverse and high-quality formal language data. To address this issue, we introduce Spark-Prover-X1, a 7B parameter model trained via an three-stage framework designed to unlock the reasoning potential of more accessible and moderately-sized LLMs. The first stage infuses deep knowledge through continuous pre-training on a broad mathematical corpus, enhanced by a suite of novel data tasks. Key innovation is a "CoT-augmented state prediction" task to achieve fine-grained reasoning. The second stage employs Supervised Fine-tuning (SFT) within an expert iteration loop to specialize both the Spark-Prover-X1-7B and Spark-Formalizer-X1-7B models. Finally, a targeted round of Group Relative Policy Optimization (GRPO) is applied to sharpen the prover's capabilities on the most challenging problems. To facilitate robust evaluation, particularly on problems from real-world examinations, we also introduce ExamFormal-Bench, a new benchmark dataset of 402 formal problems. Experimental results demonstrate that Spark-Prover achieves state-of-the-art performance among similarly-sized open-source models within the "Whole-Proof Generation" paradigm. It shows exceptional performance on difficult competition benchmarks, notably solving 27 problems on PutnamBench (pass@32) and achieving 24.0\% on CombiBench (pass@32). Our work validates that this diverse training data and progressively refined training pipeline provides an effective path for enhancing the formal reasoning capabilities of lightweight LLMs. Both Spark-Prover-X1-7B and Spark-Formalizer-X1-7B, along with the ExamFormal-Bench dataset, are made publicly available at: https://www.modelscope.cn/organization/iflytek, https://gitcode.com/ifly_opensource.




Abstract:We present TempoMaster, a novel framework that formulates long video generation as next-frame-rate prediction. Specifically, we first generate a low-frame-rate clip that serves as a coarse blueprint of the entire video sequence, and then progressively increase the frame rate to refine visual details and motion continuity. During generation, TempoMaster employs bidirectional attention within each frame-rate level while performing autoregression across frame rates, thus achieving long-range temporal coherence while enabling efficient and parallel synthesis. Extensive experiments demonstrate that TempoMaster establishes a new state-of-the-art in long video generation, excelling in both visual and temporal quality.




Abstract:Large Language Models (LLMs) often exhibit deficiencies with complex reasoning tasks, such as maths, which we attribute to the discrepancy between human reasoning patterns and those presented in the LLMs' training data. When dealing with complex problems, humans tend to think carefully before expressing solutions. However, they often do not articulate their inner thoughts, including their intentions and chosen methodologies. Consequently, critical insights essential for bridging reasoning steps may be absent in training data collected from human sources. To bridge this gap, we proposes inserting \emph{insight}s between consecutive reasoning steps, which review the status and initiate the next reasoning steps. Unlike prior prompting strategies that rely on a single or a workflow of static prompts to facilitate reasoning, \emph{insight}s are \emph{proactively} generated to guide reasoning processes. We implement our idea as a reasoning framework, named \emph{Thinking Before You Speak} (TBYS), and design a pipeline for automatically collecting and filtering in-context examples for the generation of \emph{insight}s, which alleviates human labeling efforts and fine-tuning overheads. Experiments on challenging mathematical datasets verify the effectiveness of TBYS. Project website: https://gitee.com/jswrt/TBYS




Abstract:The post-pandemic surge in healthcare demand, coupled with critical nursing shortages, has placed unprecedented pressure on emergency department triage systems, necessitating innovative AI-driven solutions. We present a multi-agent interactive intelligent system for medical triage that addresses three fundamental challenges in current AI-based triage systems: insufficient medical specialization leading to hallucination-induced misclassifications, heterogeneous department structures across healthcare institutions, and inefficient detail-oriented questioning that impedes rapid triage decisions. Our system employs three specialized agents - RecipientAgent, InquirerAgent, and DepartmentAgent - that collaborate through structured inquiry mechanisms and department-specific guidance rules to transform unstructured patient symptoms into accurate department recommendations. To ensure robust evaluation, we constructed a comprehensive Chinese medical triage dataset from a medical website, comprising 3,360 real-world cases spanning 9 primary departments and 62 secondary departments. Through systematic data imputation using large language models, we address the prevalent issue of incomplete medical records in real-world data. Experimental results demonstrate that our multi-agent system achieves 89.2% accuracy in primary department classification and 73.9% accuracy in secondary department classification after four rounds of patient interaction. The system's pattern-matching-based guidance mechanisms enable efficient adaptation to diverse hospital configurations while maintaining high triage accuracy. Our work provides a scalable framework for deploying AI-assisted triage systems that can accommodate the organizational heterogeneity of healthcare institutions while ensuring clinically sound decision-making.
Abstract:Large Language Models (LLMs) often struggle with complex reasoning tasks due to insufficient in-depth insights in their training data, which are typically absent in publicly available documents. This paper introduces the Chain of Methodologies (CoM), an innovative and intuitive prompting framework that enhances structured thinking by integrating human methodological insights, enabling LLMs to tackle complex tasks with extended reasoning. CoM leverages the metacognitive abilities of advanced LLMs, activating systematic reasoning throught user-defined methodologies without explicit fine-tuning. Experiments show that CoM surpasses competitive baselines, demonstrating the potential of training-free prompting methods as robust solutions for complex reasoning tasks and bridging the gap toward human-level reasoning through human-like methodological insights.
Abstract:Agentic AI has gained significant interest as a research paradigm focused on autonomy, self-directed learning, and long-term reliability of decision making. Real-world agentic systems operate in decentralized settings on a large set of tasks or data distributions with constraints such as limited bandwidth, asynchronous execution, and the absence of a centralized model or even common objectives. We posit that exploiting previously learned skills, task similarities, and communication capabilities in a collective of agentic AI are challenging but essential elements to enabling scalability, open-endedness, and beneficial collaborative learning dynamics. In this paper, we introduce Modular Sharing and Composition in Collective Learning (MOSAIC), an agentic algorithm that allows multiple agents to independently solve different tasks while also identifying, sharing, and reusing useful machine-learned knowledge, without coordination, synchronization, or centralized control. MOSAIC combines three mechanisms: (1) modular policy composition via neural network masks, (2) cosine similarity estimation using Wasserstein embeddings for knowledge selection, and (3) asynchronous communication and policy integration. Results on a set of RL benchmarks show that MOSAIC has a greater sample efficiency than isolated learners, i.e., it learns significantly faster, and in some cases, finds solutions to tasks that cannot be solved by isolated learners. The collaborative learning and sharing dynamics are also observed to result in the emergence of ideal curricula of tasks, from easy to hard. These findings support the case for collaborative learning in agentic systems to achieve better and continuously evolving performance both at the individual and collective levels.
Abstract:Adversarial attacks pose a significant threat to machine learning models by inducing incorrect predictions through imperceptible perturbations to input data. While these attacks have been extensively studied in unstructured data like images, their application to tabular data presents new challenges. These challenges arise from the inherent heterogeneity and complex feature interdependencies in tabular data, which differ significantly from those in image data. To address these differences, it is crucial to consider imperceptibility as a key criterion specific to tabular data. Most current research focuses primarily on achieving effective adversarial attacks, often overlooking the importance of maintaining imperceptibility. To address this gap, we propose a new benchmark for adversarial attacks on tabular data that evaluates both effectiveness and imperceptibility. In this study, we assess the effectiveness and imperceptibility of five adversarial attacks across four models using eleven tabular datasets, including both mixed and numerical-only datasets. Our analysis explores how these factors interact and influence the overall performance of the attacks. We also compare the results across different dataset types to understand the broader implications of these findings. The findings from this benchmark provide valuable insights for improving the design of adversarial attack algorithms, thereby advancing the field of adversarial machine learning on tabular data.