Since the release of ChatGPT, generative models have achieved tremendous success and become the de facto approach for various NLP tasks. However, its application in the field of input methods remains under-explored. Many neural network approaches have been applied to the construction of Chinese input method engines(IMEs).Previous research often assumed that the input pinyin was correct and focused on Pinyin-to-character(P2C) task, which significantly falls short of meeting users' demands. Moreover, previous research could not leverage user feedback to optimize the model and provide personalized results. In this study, we propose a novel Generative Input paradigm named GeneInput. It uses prompts to handle all input scenarios and other intelligent auxiliary input functions, optimizing the model with user feedback to deliver personalized results. The results demonstrate that we have achieved state-of-the-art performance for the first time in the Full-mode Key-sequence to Characters(FK2C) task. We propose a novel reward model training method that eliminates the need for additional manual annotations and the performance surpasses GPT-4 in tasks involving intelligent association and conversational assistance. Compared to traditional paradigms, GeneInput not only demonstrates superior performance but also exhibits enhanced robustness, scalability, and online learning capabilities.
Recently, heatmap regression methods based on 1D landmark representations have shown prominent performance on locating facial landmarks. However, previous methods ignored to make deep explorations on the good potentials of 1D landmark representations for sequential and structural modeling of multiple landmarks to track facial landmarks. To address this limitation, we propose a Transformer architecture, namely 1DFormer, which learns informative 1D landmark representations by capturing the dynamic and the geometric patterns of landmarks via token communications in both temporal and spatial dimensions for facial landmark tracking. For temporal modeling, we propose a recurrent token mixing mechanism, an axis-landmark-positional embedding mechanism, as well as a confidence-enhanced multi-head attention mechanism to adaptively and robustly embed long-term landmark dynamics into their 1D representations; for structure modeling, we design intra-group and inter-group structure modeling mechanisms to encode the component-level as well as global-level facial structure patterns as a refinement for the 1D representations of landmarks through token communications in the spatial dimension via 1D convolutional layers. Experimental results on the 300VW and the TF databases show that 1DFormer successfully models the long-range sequential patterns as well as the inherent facial structures to learn informative 1D representations of landmark sequences, and achieves state-of-the-art performance on facial landmark tracking.
Recent studies have demonstrated that large language models (LLMs) store massive factual knowledge within their parameters. But existing LLMs are prone to hallucinate unintended text due to false or outdated knowledge. Since retraining LLMs is resource intensive, there has been a growing interest in the concept of model editing. Despite the emergence of benchmarks and approaches, these unidirectional editing and evaluation have failed to explore the reversal curse. Intuitively, if "The capital of France is" is edited to be a counterfact "London" within a model, then it should be able to naturally reason and recall the reverse fact, i.e., "London is the capital of" followed by "France" instead of "England". In this paper, we study bidirectional language model editing, aiming to provide rigorous model editing evaluation to assess if edited LLMs can recall the editing knowledge bidirectionally. A new evaluation metric of reversibility is introduced, and a benchmark dubbed as Bidirectional Assessment for Knowledge Editing (BAKE) is constructed to evaluate the reversibility of edited models in recalling knowledge in the reverse direction of editing. We surprisingly observe that while current editing methods and LLMs can effectively recall editing facts in the direction of editing, they suffer serious deficiencies when evaluated in the reverse direction. To mitigate the reversal curse, a method named Bidirectionally Inversible Relationship moDeling (BIRD) is proposed. A set of editing objectives that incorporate bidirectional relationships between subject and object into the updated model weights are designed. Experiments show that BIRD improves the performance of four representative LLMs of different sizes via question answering and judgement.
The prosperity of deep neural networks (DNNs) is largely benefited from open-source datasets, based on which users can evaluate and improve their methods. In this paper, we revisit backdoor-based dataset ownership verification (DOV), which is currently the only feasible approach to protect the copyright of open-source datasets. We reveal that these methods are fundamentally harmful given that they could introduce malicious misclassification behaviors to watermarked DNNs by the adversaries. In this paper, we design DOV from another perspective by making watermarked models (trained on the protected dataset) correctly classify some `hard' samples that will be misclassified by the benign model. Our method is inspired by the generalization property of DNNs, where we find a \emph{hardly-generalized domain} for the original dataset (as its \emph{domain watermark}). It can be easily learned with the protected dataset containing modified samples. Specifically, we formulate the domain generation as a bi-level optimization and propose to optimize a set of visually-indistinguishable clean-label modified data with similar effects to domain-watermarked samples from the hardly-generalized domain to ensure watermark stealthiness. We also design a hypothesis-test-guided ownership verification via our domain watermark and provide the theoretical analyses of our method. Extensive experiments on three benchmark datasets are conducted, which verify the effectiveness of our method and its resistance to potential adaptive methods. The code for reproducing main experiments is available at \url{https://github.com/JunfengGo/Domain-Watermark}.
Joint entity and relation extraction is a process that identifies entity pairs and their relations using a single model. We focus on the problem of training these models on distantly-labeled data, which is generated by aligning entity mentions in a text corpus with their corresponding entity and relation types in a knowledge base. One key challenge here is the presence of noisy labels, which arises from both entity and relation annotations, and significantly impair the effectiveness of supervised learning applications. However, existing research primarily addresses only one type of noise, thereby limiting the effectiveness of noise reduction. To fill this gap, we introduce a new noise-robust approach, that 1)~incorporates a pre-trained GPT-2 into a sequence tagging scheme for simultaneous entity and relation detection, and 2)~employs a noise-robust learning framework which includes a new loss function that penalizes inconsistency with both significant relation patterns and entity-relation dependencies, as well as a self-adaptive learning step that iteratively selects and trains on high-quality instances. Experiments on two datasets show that our method outperforms the existing state-of-the-art methods in both joint extraction performance and noise reduction effect.
Autonomous robotic systems, like autonomous vehicles and robotic search and rescue, require efficient on-device training for continuous adaptation of Deep Reinforcement Learning (DRL) models in dynamic environments. This research is fundamentally motivated by the need to understand and address the challenges of on-device real-time DRL, which involves balancing timing and algorithm performance under memory constraints, as exposed through our extensive empirical studies. This intricate balance requires co-optimizing two pivotal parameters of DRL training -- batch size and replay buffer size. Configuring these parameters significantly affects timing and algorithm performance, while both (unfortunately) require substantial memory allocation to achieve near-optimal performance. This paper presents R^3, a holistic solution for managing timing, memory, and algorithm performance in on-device real-time DRL training. R^3 employs (i) a deadline-driven feedback loop with dynamic batch sizing for optimizing timing, (ii) efficient memory management to reduce memory footprint and allow larger replay buffer sizes, and (iii) a runtime coordinator guided by heuristic analysis and a runtime profiler for dynamically adjusting memory resource reservations. These components collaboratively tackle the trade-offs in on-device DRL training, improving timing and algorithm performance while minimizing the risk of out-of-memory (OOM) errors. We implemented and evaluated R^3 extensively across various DRL frameworks and benchmarks on three hardware platforms commonly adopted by autonomous robotic systems. Additionally, we integrate R^3 with a popular realistic autonomous car simulator to demonstrate its real-world applicability. Evaluation results show that R^3 achieves efficacy across diverse platforms, ensuring consistent latency performance and timing predictability with minimal overhead.
Recent advancements in language models (LMs) have gained substantial attentions on their capability to generate human-like responses. Though exhibiting a promising future for various applications such as conversation AI, these LMs face deployment challenges on various devices due to their extreme computational cost and unpredictable inference latency. Such varied inference latency, identified as a consequence of uncertainty intrinsic to the nature of language, can lead to computational inefficiency and degrade the overall performance of LMs, especially under high-traffic workloads. Unfortunately, the bandwidth of these uncertainty sources is extensive, complicating the prediction of latency and the effects emanating from such uncertainties. To understand and mitigate the impact of uncertainty on real-time response-demanding systems, we take the first step to comprehend, quantify and optimize these uncertainty-induced latency performance variations in LMs. Specifically, we present RT-LM, an uncertainty-aware resource management ecosystem for real-time inference of LMs. RT-LM innovatively quantifies how specific input uncertainties, adversely affect latency, often leading to an increased output length. Exploiting these insights, we devise a lightweight yet effective method to dynamically correlate input text uncertainties with output length at runtime. Utilizing this quantification as a latency heuristic, we integrate the uncertainty information into a system-level scheduler which explores several uncertainty-induced optimization opportunities, including uncertainty-aware prioritization, dynamic consolidation, and strategic CPU offloading. Quantitative experiments across five state-of-the-art LMs on two hardware platforms demonstrates that RT-LM can significantly reduce the average response time and improve throughput while incurring a rather small runtime overhead.
Logs play a crucial role in system monitoring and debugging by recording valuable system information, including events and states. Although various methods have been proposed to detect anomalies in log sequences, they often overlook the significance of considering relations among system components, such as services and users, which can be identified from log contents. Understanding these relations is vital for detecting anomalies and their underlying causes. To address this issue, we introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect relational anomalies in system logs. GLAD incorporates log semantics, relational patterns, and sequential patterns into a unified framework for anomaly detection. Specifically, GLAD first introduces a field extraction module that utilizes prompt-based few-shot learning to identify essential fields from log contents. Then GLAD constructs dynamic log graphs for sliding windows by interconnecting extracted fields and log events parsed from the log parser. These graphs represent events and fields as nodes and their relations as edges. Subsequently, GLAD utilizes a temporal-attentive graph edge anomaly detection model for identifying anomalous relations in these dynamic log graphs. This model employs a Graph Neural Network (GNN)-based encoder enhanced with transformers to capture content, structural and temporal features. We evaluate our proposed method on three datasets, and the results demonstrate the effectiveness of GLAD in detecting anomalies indicated by varying relational patterns.
Intelligent robots are designed to effectively navigate dynamic and unpredictable environments laden with moving mechanical elements and objects. Such environment-induced dynamics, including moving obstacles, can readily alter the computational demand (e.g., the creation of new tasks) and the structure of workloads (e.g., precedence constraints among tasks) during runtime, thereby adversely affecting overall system performance. This challenge is amplified when multi-task inference is expected on robots operating under stringent resource and real-time constraints. To address such a challenge, we introduce RED, a systematic real-time scheduling approach designed to support multi-task deep neural network workloads in resource-limited robotic systems. It is designed to adaptively manage the Robotic Environmental Dynamics (RED) while adhering to real-time constraints. At the core of RED lies a deadline-based scheduler that employs an intermediate deadline assignment policy, effectively managing to change workloads and asynchronous inference prompted by complex, unpredictable environments. This scheduling framework also facilitates the flexible deployment of MIMONet (multi-input multi-output neural networks), which are commonly utilized in multi-tasking robotic systems to circumvent memory bottlenecks. Building on this scheduling framework, RED recognizes and leverages a unique characteristic of MIMONet: its weight-shared architecture. To further accommodate and exploit this feature, RED devises a novel and effective workload refinement and reconstruction process. This process ensures the scheduling framework's compatibility with MIMONet and maximizes efficiency.