Chinese Spelling Correction (CSC) aims to detect and correct erroneous characters in Chinese texts. Although efforts have been made to introduce phonetic information (Hanyu Pinyin) in this task, they typically merge phonetic representations with character representations, which tends to weaken the representation effect of normal texts. In this work, we propose to disentangle the two types of features to allow for direct interaction between textual and phonetic information. To learn useful phonetic representations, we introduce a pinyin-to-character objective to ask the model to predict the correct characters based solely on phonetic information, where a separation mask is imposed to disable attention from phonetic input to text. To avoid overfitting the phonetics, we further design a self-distillation module to ensure that semantic information plays a major role in the prediction. Extensive experiments on three CSC benchmarks demonstrate the superiority of our method in using phonetic information.
Retrieving proper domain knowledge from an external database lies at the heart of end-to-end task-oriented dialog systems to generate informative responses. Most existing systems blend knowledge retrieval with response generation and optimize them with direct supervision from reference responses, leading to suboptimal retrieval performance when the knowledge base becomes large-scale. To address this, we propose to decouple knowledge retrieval from response generation and introduce a multi-grained knowledge retriever (MAKER) that includes an entity selector to search for relevant entities and an attribute selector to filter out irrelevant attributes. To train the retriever, we propose a novel distillation objective that derives supervision signals from the response generator. Experiments conducted on three standard benchmarks with both small and large-scale knowledge bases demonstrate that our retriever performs knowledge retrieval more effectively than existing methods. Our code has been made publicly available.\footnote{https://github.com/18907305772/MAKER}
Knowledge distillation has attracted a great deal of interest recently to compress pre-trained language models. However, existing knowledge distillation methods suffer from two limitations. First, the student model simply imitates the teacher's behavior while ignoring the underlying reasoning. Second, these methods usually focus on the transfer of sophisticated model-specific knowledge but overlook data-specific knowledge. In this paper, we present a novel attribution-driven knowledge distillation approach, which explores the token-level rationale behind the teacher model based on Integrated Gradients (IG) and transfers attribution knowledge to the student model. To enhance the knowledge transfer of model reasoning and generalization, we further explore multi-view attribution distillation on all potential decisions of the teacher. Comprehensive experiments are conducted with BERT on the GLUE benchmark. The experimental results demonstrate the superior performance of our approach to several state-of-the-art methods.
Contrastive learning has been widely studied in sentence representation learning. However, earlier works mainly focus on the construction of positive examples, while in-batch samples are often simply treated as negative examples. This approach overlooks the importance of selecting appropriate negative examples, potentially leading to a scarcity of hard negatives and the inclusion of false negatives. To address these issues, we propose ClusterNS (Clustering-aware Negative Sampling), a novel method that incorporates cluster information into contrastive learning for unsupervised sentence representation learning. We apply a modified K-means clustering algorithm to supply hard negatives and recognize in-batch false negatives during training, aiming to solve the two issues in one unified framework. Experiments on semantic textual similarity (STS) tasks demonstrate that our proposed ClusterNS compares favorably with baselines in unsupervised sentence representation learning. Our code has been made publicly available.
To model the dependencies between utterances in multi-party conversations, we propose a simple and generic framework based on the dependency parsing results of utterances. Particularly, we present an approach to encoding the dependencies in the form of relative dependency encoding (ReDE) and illustrate how to implement it in Transformers by modifying the computation of self-attention. Experimental results on four multi-party conversation benchmarks show that this framework successfully boosts the general performance of two Transformer-based language models and leads to comparable or even superior performance compared to the state-of-the-art methods. The codes are available at https://github.com/shenwzh3/ReDE.
Predicting personality traits based on online posts has emerged as an important task in many fields such as social network analysis. One of the challenges of this task is assembling information from various posts into an overall profile for each user. While many previous solutions simply concatenate the posts into a long document and then encode the document by sequential or hierarchical models, they introduce unwarranted orders for the posts, which may mislead the models. In this paper, we propose a dynamic deep graph convolutional network (D-DGCN) to overcome the above limitation. Specifically, we design a learn-to-connect approach that adopts a dynamic multi-hop structure instead of a deterministic structure, and combine it with a DGCN module to automatically learn the connections between posts. The modules of post encoder, learn-to-connect, and DGCN are jointly trained in an end-to-end manner. Experimental results on the Kaggle and Pandora datasets show the superior performance of D-DGCN to state-of-the-art baselines. Our code is available at https://github.com/djz233/D-DGCN.
Fine-tuning large pre-trained language models on downstream tasks is apt to suffer from overfitting when limited training data is available. While dropout proves to be an effective antidote by randomly dropping a proportion of units, existing research has not examined its effect on the self-attention mechanism. In this paper, we investigate this problem through self-attention attribution and find that dropping attention positions with low attribution scores can accelerate training and increase the risk of overfitting. Motivated by this observation, we propose Attribution-Driven Dropout (AD-DROP), which randomly discards some high-attribution positions to encourage the model to make predictions by relying more on low-attribution positions to reduce overfitting. We also develop a cross-tuning strategy to alternate fine-tuning and AD-DROP to avoid dropping high-attribution positions excessively. Extensive experiments on various benchmarks show that AD-DROP yields consistent improvements over baselines. Analysis further confirms that AD-DROP serves as a strategic regularizer to prevent overfitting during fine-tuning.
Prompt tuning learns soft prompts to condition frozen Pre-trained Language Models (PLMs) for performing downstream tasks in a parameter-efficient manner. While prompt tuning has gradually reached the performance level of fine-tuning as the model scale increases, there is still a large performance gap between prompt tuning and fine-tuning for models of moderate and small scales (typically less than 11B parameters). In this paper, we empirically show that the trained prompt tokens can have a negative impact on a downstream task and thus degrade its performance. To bridge the gap, we propose a novel Prompt tuning model with an eXtremely small scale (XPrompt) under the regime of lottery tickets hypothesis. Specifically, XPrompt eliminates the negative prompt tokens at different granularity levels through a hierarchical structured pruning, yielding a more parameter-efficient prompt yet with a competitive performance. Comprehensive experiments are carried out on SuperGLUE tasks, and the extensive results indicate that XPrompt is able to close the performance gap at smaller model scales.
Task-oriented dialog (TOD) systems often require interaction with an external knowledge base to retrieve necessary entity (e.g., restaurant) information to support the response generation. Most current end-to-end TOD systems either retrieve the KB information explicitly or embed it into model parameters for implicit access.~While the former approach demands scanning the KB at each turn of response generation, which is inefficient when the KB scales up, the latter approach shows higher flexibility and efficiency. In either approach, the systems may generate a response with conflicting entity information. To address this issue, we propose to generate the entity autoregressively first and leverage it to guide the response generation in an end-to-end system. To ensure entity consistency, we impose a trie constraint on entity generation. We also introduce a logit concatenation strategy to facilitate gradient backpropagation for end-to-end training. Experiments on MultiWOZ 2.1 single and CAMREST show that our system can generate more high-quality and entity-consistent responses.
This paper studies the exposure bias problem in task-oriented dialog systems, where the model's generated content over multiple turns drives the dialog context away from the ground-truth distribution at training time, introducing error propagation and damaging the robustness of the TOD system. To bridge the gap between training and inference for multi-turn task-oriented dialogs, we propose session-level sampling which explicitly exposes the model to sampled generated content of dialog context during training. Additionally, we employ a dropout-based consistency regularization with the masking strategy R-Mask to further improve the robustness and performance of the model. The proposed UBARv2 achieves state-of-the-art performance on the standardized evaluation benchmark MultiWOZ and extensive experiments show the effectiveness of the proposed methods.