Abstract:We introduce MedAgentGYM, the first publicly available training environment designed to enhance coding-based medical reasoning capabilities in large language model (LLM) agents. MedAgentGYM comprises 72,413 task instances across 129 categories derived from authentic real-world biomedical scenarios. Tasks are encapsulated within executable coding environments, each featuring detailed task descriptions, interactive feedback mechanisms, verifiable ground-truth annotations, and scalable training trajectory generation. Extensive benchmarking of over 30 LLMs reveals a notable performance disparity between commercial API-based models and open-source counterparts. Leveraging MedAgentGYM, Med-Copilot-7B achieves substantial performance gains through supervised fine-tuning (+36.44%) and continued reinforcement learning (+42.47%), emerging as an affordable and privacy-preserving alternative competitive with gpt-4o. By offering both a comprehensive benchmark and accessible, expandable training resources within unified execution environments, MedAgentGYM delivers an integrated platform to develop LLM-based coding assistants for advanced biomedical research and practice.
Abstract:In recent years, graph anomaly detection has found extensive applications in various domains such as social, financial, and communication networks. However, anomalies in graph-structured data present unique challenges, including label scarcity, ill-defined anomalies, and varying anomaly types, making supervised or semi-supervised methods unreliable. Researchers often adopt unsupervised approaches to address these challenges, assuming that anomalies deviate significantly from the normal data distribution. Yet, when the available data is insufficient, capturing the normal distribution accurately and comprehensively becomes difficult. To overcome this limitation, we propose to utilize external graph data (i.e., graph data in the wild) to help anomaly detection tasks. This naturally raises the question: How can we use external data to help graph anomaly detection tasks? To answer this question, we propose a framework called Wild-GAD. It is built upon a unified database, UniWildGraph, which comprises a large and diverse collection of graph data with broad domain coverage, ample data volume, and a unified feature space. Further, we develop selection criteria based on representativity and diversity to identify the most suitable external data for anomaly detection task. Extensive experiments on six real-world datasets demonstrate the effectiveness of Wild-GAD. Compared to the baseline methods, our framework has an average 18% AUCROC and 32% AUCPR improvement over the best-competing methods.
Abstract:Recent breakthroughs in text-to-speech (TTS) voice cloning have raised serious privacy concerns, allowing highly accurate vocal identity replication from just a few seconds of reference audio, while retaining the speaker's vocal authenticity. In this paper, we introduce CloneShield, a universal time-domain adversarial perturbation framework specifically designed to defend against zero-shot voice cloning. Our method provides protection that is robust across speakers and utterances, without requiring any prior knowledge of the synthesized text. We formulate perturbation generation as a multi-objective optimization problem, and propose Multi-Gradient Descent Algorithm (MGDA) to ensure the robust protection across diverse utterances. To preserve natural auditory perception for users, we decompose the adversarial perturbation via Mel-spectrogram representations and fine-tune it for each sample. This design ensures imperceptibility while maintaining strong degradation effects on zero-shot cloned outputs. Experiments on three state-of-the-art zero-shot TTS systems, five benchmark datasets and evaluations from 60 human listeners demonstrate that our method preserves near-original audio quality in protected inputs (PESQ = 3.90, SRS = 0.93) while substantially degrading both speaker similarity and speech quality in cloned samples (PESQ = 1.07, SRS = 0.08).
Abstract:The de-identification of private information in medical data is a crucial process to mitigate the risk of confidentiality breaches, particularly when patient personal details are not adequately removed before the release of medical records. Although rule-based and learning-based methods have been proposed, they often struggle with limited generalizability and require substantial amounts of annotated data for effective performance. Recent advancements in large language models (LLMs) have shown significant promise in addressing these issues due to their superior language comprehension capabilities. However, LLMs present challenges, including potential privacy risks when using commercial LLM APIs and high computational costs for deploying open-source LLMs locally. In this work, we introduce LPPA, an LLM-empowered Privacy-Protected PHI Annotation framework for clinical notes, targeting the English language. By fine-tuning LLMs locally with synthetic notes, LPPA ensures strong privacy protection and high PHI annotation accuracy. Extensive experiments demonstrate LPPA's effectiveness in accurately de-identifying private information, offering a scalable and efficient solution for enhancing patient privacy protection.
Abstract:Retrieval-Augmented Generation (RAG) systems often struggle to handle multi-hop question-answering tasks accurately due to irrelevant context retrieval and limited complex reasoning capabilities. We introduce Collab-RAG, a collaborative training framework that leverages mutual enhancement between a white-box small language model (SLM) and a blackbox large language model (LLM) for RAG. Specifically, the SLM decomposes complex queries into simpler sub-questions, thus enhancing the accuracy of the retrieval and facilitating more effective reasoning by the black-box LLM. Concurrently, the black-box LLM provides feedback signals to improve the SLM's decomposition capability. We observe that Collab-RAG relies solely on supervision from an affordable black-box LLM without additional distillation from frontier LLMs, yet demonstrates strong generalization across multiple black-box LLMs. Experimental evaluations across five multi-hop QA datasets demonstrate that Collab-RAG substantially outperforms existing black-box-only and SLM fine-tuning baselines by 1.8%-14.2% on average. In particular, our fine-tuned 3B SLM surpasses a frozen 32B LLM in question decomposition, highlighting the efficiency of Collab-RAG in improving reasoning and retrieval for complex questions. The code of Collab-RAG is available on https://github.com/ritaranx/Collab-RAG/.
Abstract:Graph Neural Networks (GNNs) and differential equations (DEs) are two rapidly advancing areas of research that have shown remarkable synergy in recent years. GNNs have emerged as powerful tools for learning on graph-structured data, while differential equations provide a principled framework for modeling continuous dynamics across time and space. The intersection of these fields has led to innovative approaches that leverage the strengths of both, enabling applications in physics-informed learning, spatiotemporal modeling, and scientific computing. This survey aims to provide a comprehensive overview of the burgeoning research at the intersection of GNNs and DEs. We will categorize existing methods, discuss their underlying principles, and highlight their applications across domains such as molecular modeling, traffic prediction, and epidemic spreading. Furthermore, we identify open challenges and outline future research directions to advance this interdisciplinary field. A comprehensive paper list is provided at https://github.com/Emory-Melody/Awesome-Graph-NDEs. This survey serves as a resource for researchers and practitioners seeking to understand and contribute to the fusion of GNNs and DEs
Abstract:LLM-based Multi-Agent Systems (MAS) have proven highly effective in solving complex problems by integrating multiple agents, each performing different roles. However, in sensitive domains, they face emerging privacy protection challenges. In this paper, we introduce the concept of Federated MAS, highlighting the fundamental differences between Federated MAS and traditional FL. We then identify key challenges in developing Federated MAS, including: 1) heterogeneous privacy protocols among agents, 2) structural differences in multi-party conversations, and 3) dynamic conversational network structures. To address these challenges, we propose Embedded Privacy-Enhancing Agents (EPEAgent), an innovative solution that integrates seamlessly into the Retrieval-Augmented Generation (RAG) phase and the context retrieval stage. This solution minimizes data flows, ensuring that only task-relevant, agent-specific information is shared. Additionally, we design and generate a comprehensive dataset to evaluate the proposed paradigm. Extensive experiments demonstrate that EPEAgent effectively enhances privacy protection while maintaining strong system performance. The code will be availiable at https://github.com/ZitongShi/EPEAgent
Abstract:Federated Learning (FL) on graphs enables collaborative model training to enhance performance without compromising the privacy of each client. However, existing methods often overlook the mutable nature of graph data, which frequently introduces new nodes and leads to shifts in label distribution. Since they focus solely on performing well on each client's local data, they are prone to overfitting to their local distributions (i.e., local overfitting), which hinders their ability to generalize to unseen data with diverse label distributions. In contrast, our proposed method, FedLoG, effectively tackles this issue by mitigating local overfitting. Our model generates global synthetic data by condensing the reliable information from each class representation and its structural information across clients. Using these synthetic data as a training set, we alleviate the local overfitting problem by adaptively generalizing the absent knowledge within each local dataset. This enhances the generalization capabilities of local models, enabling them to handle unseen data effectively. Our model outperforms baselines in our proposed experimental settings, which are designed to measure generalization power to unseen data in practical scenarios. Our code is available at https://github.com/sung-won-kim/FedLoG
Abstract:Graph unlearning aims to remove a subset of graph entities (i.e. nodes and edges) from a graph neural network (GNN) trained on the graph. Unlike machine unlearning for models trained on Euclidean-structured data, effectively unlearning a model trained on non-Euclidean-structured data, such as graphs, is challenging because graph entities exhibit mutual dependencies. Existing works utilize graph partitioning, influence function, or additional layers to achieve graph unlearning. However, none of them can achieve high scalability and effectiveness without additional constraints. In this paper, we achieve more effective graph unlearning by utilizing the embedding space. The primary training objective of a GNN is to generate proper embeddings for each node that encapsulates both structural information and node feature representations. Thus, directly optimizing the embedding space can effectively remove the target nodes' information from the model. Based on this intuition, we propose node-level contrastive unlearning (Node-CUL). It removes the influence of the target nodes (unlearning nodes) by contrasting the embeddings of remaining nodes and neighbors of unlearning nodes. Through iterative updates, the embeddings of unlearning nodes gradually become similar to those of unseen nodes, effectively removing the learned information without directly incorporating unseen data. In addition, we introduce a neighborhood reconstruction method that optimizes the embeddings of the neighbors in order to remove influence of unlearning nodes to maintain the utility of the GNN model. Experiments on various graph data and models show that our Node-CUL achieves the best unlearn efficacy and enhanced model utility with requiring comparable computing resources with existing frameworks.
Abstract:Graph data has become a pivotal modality due to its unique ability to model relational datasets. However, real-world graph data continues to grow exponentially, resulting in a quadratic increase in the complexity of most graph algorithms as graph sizes expand. Although graph condensation (GC) methods have been proposed to address these scalability issues, existing approaches often treat the training set as static, overlooking the evolving nature of real-world graph data. This limitation leads to inefficiencies when condensing growing training sets. In this paper, we introduce GECC (Graph Evolving Clustering Condensation), a scalable graph condensation method designed to handle large-scale and evolving graph data. GECC employs a traceable and efficient approach by performing class-wise clustering on aggregated features. Furthermore, it can inherits previous condensation results as clustering centroids when the condensed graph expands, thereby attaining an evolving capability. This methodology is supported by robust theoretical foundations and demonstrates superior empirical performance. Comprehensive experiments show that GECC achieves better performance than most state-of-the-art graph condensation methods while delivering an around 1,000x speedup on large datasets.