Xiamen University, China
Abstract:Autonomous vehicles (AVs) are poised to revolutionize global transportation systems. However, its widespread acceptance and market penetration remain significantly below expectations. This gap is primarily driven by persistent challenges in safety, comfort, commuting efficiency and energy economy when compared to the performance of experienced human drivers. We hypothesize that these challenges can be addressed through the development of a driver foundation model (DFM). Accordingly, we propose a framework for establishing DFMs to comprehensively benchmark AVs. Specifically, we describe a large-scale dataset collection strategy for training a DFM, discuss the core functionalities such a model should possess, and explore potential technical solutions to realize these functionalities. We further present the utility of the DFM across the operational spectrum, from defining human-centric safety envelopes to establishing benchmarks for energy economy. Overall, We aim to formalize the DFM concept and introduce a new paradigm for the systematic specification, verification and validation of AVs.
Abstract:Autonomous Machine Learning Engineering (MLE) requires agents to perform sustained, iterative optimization over long horizons. While recent LLM-based agents show promise, current prompt-based agents for MLE suffer from behavioral stagnation due to frozen parameters. Although Reinforcement Learning (RL) offers a remedy, applying it to MLE is hindered by prohibitive execution latency and inefficient data selection. Recognizing these challenges, we propose AceGRPO with two core components: (1) Evolving Data Buffer that continuously repurposes execution traces into reusable training tasks, and (2) Adaptive Sampling guided by a Learnability Potential function, which dynamically prioritizes tasks at the agent's learning frontier to maximize learning efficiency. Leveraging AceGRPO, our trained Ace-30B model achieves a 100% valid submission rate on MLE-Bench-Lite, approaches the performance of proprietary frontier models, and outperforms larger open-source baselines (e.g., DeepSeek-V3.2), demonstrating robust capability for sustained iterative optimization. Code is available at https://github.com/yuzhu-cai/AceGRPO.
Abstract:In modern complex environments, achieving accurate and efficient target localization is essential in numerous fields. However, existing systems often face limitations in both accuracy and the ability to recognize small targets. In this study, we propose a bionic stabilized localization system based on CA-YOLO, designed to enhance both target localization accuracy and small target recognition capabilities. Acting as the "brain" of the system, the target detection algorithm emulates the visual focusing mechanism of animals by integrating bionic modules into the YOLO backbone network. These modules include the introduction of a small target detection head and the development of a Characteristic Fusion Attention Mechanism (CFAM). Furthermore, drawing inspiration from the human Vestibulo-Ocular Reflex (VOR), a bionic pan-tilt tracking control strategy is developed, which incorporates central positioning, stability optimization, adaptive control coefficient adjustment, and an intelligent recapture function. The experimental results show that CA-YOLO outperforms the original model on standard datasets (COCO and VisDrone), with average accuracy metrics improved by 3.94%and 4.90%, respectively.Further time-sensitive target localization experiments validate the effectiveness and practicality of this bionic stabilized localization system.
Abstract:The proliferation of rumors on social networks undermines information credibility. While their dissemination forms complex networks, current detection methods struggle to capture these intricate propagation patterns. Representing each node solely through its textual embeddings neglects the textual coherence across the entire rumor propagation path, which compromises the accuracy of rumor identification on social platforms. We propose a novel framework that leverages Large Language Models (LLMs) to address these limitations. Our approach captures subtle rumor signals by employing LLMs to analyze information subchains, assign rumor probabilities and intelligently construct connections to virtual nodes. This enables the modification of the original graph structure, which is a critical advancement for capturing subtle rumor signals. Given the inherent limitations of LLMs in rumor identification, we develop a structured prompt framework to mitigate model biases and ensure robust graph learning performance. Additionally, the proposed framework is model-agnostic, meaning it is not constrained to any specific graph learning algorithm or LLMs. Its plug-and-play nature allows for seamless integration with further fine-tuned LLMs and graph techniques in the future, potentially enhancing predictive performance without modifying original algorithms.
Abstract:Large Reasoning Models (LRMs) excel at complex reasoning tasks, but their efficiency is often hampered by overly verbose outputs. Prior steering methods attempt to address this issue by applying a single, global vector to hidden representations -- an approach grounded in the restrictive linear representation hypothesis. In this work, we introduce FlowSteer, a nonlinear steering method that goes beyond uniform linear shifts by learning a complete transformation between the distributions associated with verbose and concise reasoning. This transformation is learned via Flow Matching as a velocity field, enabling precise, input-dependent control over the model's reasoning process. By aligning steered representations with the distribution of concise-reasoning activations, FlowSteer yields more compact reasoning than the linear shifts. Across diverse reasoning benchmarks, FlowSteer demonstrates strong task performance and token efficiency compared to leading inference-time baselines. Our work demonstrates that modeling the full distributional transport with generative techniques offers a more effective and principled foundation for controlling LRMs.
Abstract:LiDAR relocalization aims to estimate the global 6-DoF pose of a sensor in the environment. However, existing regression-based approaches are prone to dynamic or ambiguous scenarios, as they either solely rely on single-frame inference or neglect the spatio-temporal consistency across scans. In this paper, we propose TempLoc, a new LiDAR relocalization framework that enhances the robustness of localization by effectively modeling sequential consistency. Specifically, a Global Coordinate Estimation module is first introduced to predict point-wise global coordinates and associated uncertainties for each LiDAR scan. A Prior Coordinate Generation module is then presented to estimate inter-frame point correspondences by the attention mechanism. Lastly, an Uncertainty-Guided Coordinate Fusion module is deployed to integrate both predictions of point correspondence in an end-to-end fashion, yielding a more temporally consistent and accurate global 6-DoF pose. Experimental results on the NCLT and Oxford Robot-Car benchmarks show that our TempLoc outperforms stateof-the-art methods by a large margin, demonstrating the effectiveness of temporal-aware correspondence modeling in LiDAR relocalization. Our code will be released soon.
Abstract:Most of the deep learning based medical image registration algorithms focus on brain image registration tasks.Compared with brain registration, the chest CT registration has larger deformation, more complex background and region over-lap. In this paper, we propose a fast unsupervised deep learning method, LDRNet, for large deformation image registration of chest CT images. We first predict a coarse resolution registration field, then refine it from coarse to fine. We propose two innovative technical components: 1) a refine block that is used to refine the registration field in different resolutions, 2) a rigid block that is used to learn transformation matrix from high-level features. We train and evaluate our model on the private dataset and public dataset SegTHOR. We compare our performance with state-of-the-art traditional registration methods as well as deep learning registration models VoxelMorph, RCN, and LapIRN. The results demonstrate that our model achieves state-of-the-art performance for large deformation images registration and is much faster.
Abstract:Retrieval-augmented generation is a practical paradigm for question answering over long documents, but it remains brittle for multimodal reading where text, tables, and figures are interleaved across many pages. First, flat chunking breaks document-native structure and cross-modal alignment, yielding semantic fragments that are hard to interpret in isolation. Second, even iterative retrieval can fail in long contexts by looping on partial evidence or drifting into irrelevant sections as noise accumulates, since each step is guided only by the current snippet without a persistent global search state. We introduce $G^2$-Reader, a dual-graph system, to address both issues. It evolves a Content Graph to preserve document-native structure and cross-modal semantics, and maintains a Planning Graph, an agentic directed acyclic graph of sub-questions, to track intermediate findings and guide stepwise navigation for evidence completion. On VisDoMBench across five multimodal domains, $G^2$-Reader with Qwen3-VL-32B-Instruct reaches 66.21\% average accuracy, outperforming strong baselines and a standalone GPT-5 (53.08\%).
Abstract:The advancement of artificial intelligence toward agentic science is currently bottlenecked by the challenge of ultra-long-horizon autonomy, the ability to sustain strategic coherence and iterative correction over experimental cycles spanning days or weeks. While Large Language Models (LLMs) have demonstrated prowess in short-horizon reasoning, they are easily overwhelmed by execution details in the high-dimensional, delayed-feedback environments of real-world research, failing to consolidate sparse feedback into coherent long-term guidance. Here, we present ML-Master 2.0, an autonomous agent that masters ultra-long-horizon machine learning engineering (MLE) which is a representative microcosm of scientific discovery. By reframing context management as a process of cognitive accumulation, our approach introduces Hierarchical Cognitive Caching (HCC), a multi-tiered architecture inspired by computer systems that enables the structural differentiation of experience over time. By dynamically distilling transient execution traces into stable knowledge and cross-task wisdom, HCC allows agents to decouple immediate execution from long-term experimental strategy, effectively overcoming the scaling limits of static context windows. In evaluations on OpenAI's MLE-Bench under 24-hour budgets, ML-Master 2.0 achieves a state-of-the-art medal rate of 56.44%. Our findings demonstrate that ultra-long-horizon autonomy provides a scalable blueprint for AI capable of autonomous exploration beyond human-precedent complexities.
Abstract:Semantic segmentation of 3D geospatial point clouds is pivotal for remote sensing applications. However, variations in geographic patterns across regions and data acquisition strategies induce significant domain shifts, severely degrading the performance of deployed models. Existing domain adaptation methods typically rely on access to source-domain data. However, this requirement is rarely met due to data privacy concerns, regulatory policies, and data transmission limitations. This motivates the largely underexplored setting of source-free unsupervised domain adaptation (SFUDA), where only a pretrained model and unlabeled target-domain data are available. In this paper, we propose LoGo (Local-Global Dual-Consensus), a novel SFUDA framework specifically designed for geospatial point clouds. At the local level, we introduce a class-balanced prototype estimation module that abandons conventional global threshold filtering in favor of an intra-class independent anchor mining strategy. This ensures that robust feature prototypes can be generated even for sample-scarce tail classes, effectively mitigating the feature collapse caused by long-tailed distributions. At the global level, we introduce an optimal transport-based global distribution alignment module that formulates pseudo-label assignment as a global optimization problem. By enforcing global distribution constraints, this module effectively corrects the over-dominance of head classes inherent in local greedy assignments, preventing model predictions from being severely biased towards majority classes. Finally, we propose a dual-consistency pseudo-label filtering mechanism. This strategy retains only high-confidence pseudo-labels where local multi-augmented ensemble predictions align with global optimal transport assignments for self-training.