Abstract:Mesh-based 3D static analysis methods have recently emerged as efficient alternatives to traditional computational numerical solvers, significantly reducing computational costs and runtime for various physics-based analyses. However, these methods primarily focus on surface topology and geometry, often overlooking the inherent thickness of real-world 3D objects, which exhibits high correlations and similar behavior between opposing surfaces. This limitation arises from the disconnected nature of these surfaces and the absence of internal edge connections within the mesh. In this work, we propose a novel framework, the Thickness-aware E(3)-Equivariant 3D Mesh Neural Network (T-EMNN), that effectively integrates the thickness of 3D objects while maintaining the computational efficiency of surface meshes. Additionally, we introduce data-driven coordinates that encode spatial information while preserving E(3)-equivariance or invariance properties, ensuring consistent and robust analysis. Evaluations on a real-world industrial dataset demonstrate the superior performance of T-EMNN in accurately predicting node-level 3D deformations, effectively capturing thickness effects while maintaining computational efficiency.
Abstract:Large Language Models (LLMs) are increasingly used for decision making in embodied agents, yet existing safety evaluations often rely on coarse success rates and domain-specific setups, making it difficult to diagnose why and where these models fail. This obscures our understanding of embodied safety and limits the selective deployment of LLMs in high-risk physical environments. We introduce SAFEL, the framework for systematically evaluating the physical safety of LLMs in embodied decision making. SAFEL assesses two key competencies: (1) rejecting unsafe commands via the Command Refusal Test, and (2) generating safe and executable plans via the Plan Safety Test. Critically, the latter is decomposed into functional modules, goal interpretation, transition modeling, action sequencing, enabling fine-grained diagnosis of safety failures. To support this framework, we introduce EMBODYGUARD, a PDDL-grounded benchmark containing 942 LLM-generated scenarios covering both overtly malicious and contextually hazardous instructions. Evaluation across 13 state-of-the-art LLMs reveals that while models often reject clearly unsafe commands, they struggle to anticipate and mitigate subtle, situational risks. Our results highlight critical limitations in current LLMs and provide a foundation for more targeted, modular improvements in safe embodied reasoning.
Abstract:Ambiguity remains a fundamental challenge in Natural Language Processing (NLP) due to the inherent complexity and flexibility of human language. With the advent of Large Language Models (LLMs), addressing ambiguity has become even more critical due to their expanded capabilities and applications. In the context of Conversational Question Answering (CQA), this paper explores the definition, forms, and implications of ambiguity for language driven systems, particularly in the context of LLMs. We define key terms and concepts, categorize various disambiguation approaches enabled by LLMs, and provide a comparative analysis of their advantages and disadvantages. We also explore publicly available datasets for benchmarking ambiguity detection and resolution techniques and highlight their relevance for ongoing research. Finally, we identify open problems and future research directions, proposing areas for further investigation. By offering a comprehensive review of current research on ambiguities and disambiguation with LLMs, we aim to contribute to the development of more robust and reliable language systems.
Abstract:Traditional user modeling (UM) approaches have primarily focused on designing models for a single specific task, but they face limitations in generalization and adaptability across various tasks. Recognizing these challenges, recent studies have shifted towards continual learning (CL)-based universal user representation learning aiming to develop a single model capable of handling multiple tasks. Despite advancements, existing methods are in fact evaluated under an unrealistic scenario that does not consider the passage of time as tasks progress, which overlooks newly emerged items that may change the item distribution of previous tasks. In this paper, we introduce a practical evaluation scenario on which CL-based universal user representation learning approaches should be evaluated, which takes into account the passage of time as tasks progress. Then, we propose a novel framework Dynamic Time-aware continual user representation learner, named DITTO, designed to alleviate catastrophic forgetting despite continuous shifts in item distribution, while also allowing the knowledge acquired from previous tasks to adapt to the current shifted item distribution. Through our extensive experiments, we demonstrate the superiority of DITTO over state-of-the-art methods under a practical evaluation scenario. Our source code is available at https://github.com/seungyoon-Choi/DITTO_official.
Abstract:Multi-modal recommender systems (MRSs) have achieved notable success in improving personalization by leveraging diverse modalities such as images, text, and audio. However, two key challenges remain insufficiently addressed: (1) Insufficient consideration of missing modality scenarios and (2) the overlooking of unique characteristics of modality features. These challenges result in significant performance degradation in realistic situations where modalities are missing. To address these issues, we propose Disentangling and Generating Modality Recommender (DGMRec), a novel framework tailored for missing modality scenarios. DGMRec disentangles modality features into general and specific modality features from an information-based perspective, enabling richer representations for recommendation. Building on this, it generates missing modality features by integrating aligned features from other modalities and leveraging user modality preferences. Extensive experiments show that DGMRec consistently outperforms state-of-the-art MRSs in challenging scenarios, including missing modalities and new item settings as well as diverse missing ratios and varying levels of missing modalities. Moreover, DGMRec's generation-based approach enables cross-modal retrieval, a task inapplicable for existing MRSs, highlighting its adaptability and potential for real-world applications. Our code is available at https://github.com/ptkjw1997/DGMRec.
Abstract:Large Language Models (LLMs) have recently emerged as a powerful backbone for recommender systems. Existing LLM-based recommender systems take two different approaches for representing items in natural language, i.e., Attribute-based Representation and Description-based Representation. In this work, we aim to address the trade-off between efficiency and effectiveness that these two approaches encounter, when representing items consumed by users. Based on our interesting observation that there is a significant information overlap between images and descriptions associated with items, we propose a novel method, Image is all you need for LLM-based Recommender system (I-LLMRec). Our main idea is to leverage images as an alternative to lengthy textual descriptions for representing items, aiming at reducing token usage while preserving the rich semantic information of item descriptions. Through extensive experiments, we demonstrate that I-LLMRec outperforms existing methods in both efficiency and effectiveness by leveraging images. Moreover, a further appeal of I-LLMRec is its ability to reduce sensitivity to noise in descriptions, leading to more robust recommendations.
Abstract:Federated Learning (FL) on graphs enables collaborative model training to enhance performance without compromising the privacy of each client. However, existing methods often overlook the mutable nature of graph data, which frequently introduces new nodes and leads to shifts in label distribution. Since they focus solely on performing well on each client's local data, they are prone to overfitting to their local distributions (i.e., local overfitting), which hinders their ability to generalize to unseen data with diverse label distributions. In contrast, our proposed method, FedLoG, effectively tackles this issue by mitigating local overfitting. Our model generates global synthetic data by condensing the reliable information from each class representation and its structural information across clients. Using these synthetic data as a training set, we alleviate the local overfitting problem by adaptively generalizing the absent knowledge within each local dataset. This enhances the generalization capabilities of local models, enabling them to handle unseen data effectively. Our model outperforms baselines in our proposed experimental settings, which are designed to measure generalization power to unseen data in practical scenarios. Our code is available at https://github.com/sung-won-kim/FedLoG
Abstract:In real-world applications, node features in graphs often contain noise from various sources, leading to significant performance degradation in GNNs. Although several methods have been developed to enhance robustness, they rely on the unrealistic assumption that noise in node features is independent of the graph structure and node labels, thereby limiting their applicability. To this end, we introduce a more realistic noise scenario, dependency-aware noise on graphs (DANG), where noise in node features create a chain of noise dependencies that propagates to the graph structure and node labels. We propose a novel robust GNN, DA-GNN, which captures the causal relationships among variables in the data generating process (DGP) of DANG using variational inference. In addition, we present new benchmark datasets that simulate DANG in real-world applications, enabling more practical research on robust GNNs. Extensive experiments demonstrate that DA-GNN consistently outperforms existing baselines across various noise scenarios, including both DANG and conventional noise models commonly considered in this field.
Abstract:Recent advances in large language models (LLMs) have shown great potential to accelerate drug discovery. However, the specialized nature of biochemical data often necessitates costly domain-specific fine-tuning, posing critical challenges. First, it hinders the application of more flexible general-purpose LLMs in cutting-edge drug discovery tasks. More importantly, it impedes the rapid integration of the vast amounts of scientific data continuously generated through experiments and research. To investigate these challenges, we propose CLADD, a retrieval-augmented generation (RAG)-empowered agentic system tailored to drug discovery tasks. Through the collaboration of multiple LLM agents, CLADD dynamically retrieves information from biomedical knowledge bases, contextualizes query molecules, and integrates relevant evidence to generate responses -- all without the need for domain-specific fine-tuning. Crucially, we tackle key obstacles in applying RAG workflows to biochemical data, including data heterogeneity, ambiguity, and multi-source integration. We demonstrate the flexibility and effectiveness of this framework across a variety of drug discovery tasks, showing that it outperforms general-purpose and domain-specific LLMs as well as traditional deep learning approaches.
Abstract:Existing Video Scene Graph Generation (VidSGG) studies are trained in a fully supervised manner, which requires all frames in a video to be annotated, thereby incurring high annotation cost compared to Image Scene Graph Generation (ImgSGG). Although the annotation cost of VidSGG can be alleviated by adopting a weakly supervised approach commonly used for ImgSGG (WS-ImgSGG) that uses image captions, there are two key reasons that hinder such a naive adoption: 1) Temporality within video captions, i.e., unlike image captions, video captions include temporal markers (e.g., before, while, then, after) that indicate time related details, and 2) Variability in action duration, i.e., unlike human actions in image captions, human actions in video captions unfold over varying duration. To address these issues, we propose a Natural Language-based Video Scene Graph Generation (NL-VSGG) framework that only utilizes the readily available video captions for training a VidSGG model. NL-VSGG consists of two key modules: Temporality-aware Caption Segmentation (TCS) module and Action Duration Variability-aware caption-frame alignment (ADV) module. Specifically, TCS segments the video captions into multiple sentences in a temporal order based on a Large Language Model (LLM), and ADV aligns each segmented sentence with appropriate frames considering the variability in action duration. Our approach leads to a significant enhancement in performance compared to simply applying the WS-ImgSGG pipeline to VidSGG on the Action Genome dataset. As a further benefit of utilizing the video captions as weak supervision, we show that the VidSGG model trained by NL-VSGG is able to predict a broader range of action classes that are not included in the training data, which makes our framework practical in reality.