Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo style transfer": models, code, and papers

MW-GAN: Multi-Warping GAN for Caricature Generation with Multi-Style Geometric Exaggeration

Jan 07, 2020
Haodi Hou, Jing Huo, Jing Wu, Yu-Kun Lai, Yang Gao

Given an input face photo, the goal of caricature generation is to produce stylized, exaggerated caricatures that share the same identity as the photo. It requires simultaneous style transfer and shape exaggeration with rich diversity, and meanwhile preserving the identity of the input. To address this challenging problem, we propose a novel framework called Multi-Warping GAN (MW-GAN), including a style network and a geometric network that are designed to conduct style transfer and geometric exaggeration respectively. We bridge the gap between the style and landmarks of an image with corresponding latent code spaces by a dual way design, so as to generate caricatures with arbitrary styles and geometric exaggeration, which can be specified either through random sampling of latent code or from a given caricature sample. Besides, we apply identity preserving loss to both image space and landmark space, leading to a great improvement in quality of generated caricatures. Experiments show that caricatures generated by MW-GAN have better quality than existing methods.

  
Access Paper or Ask Questions

Deep Photo Style Transfer

Apr 11, 2017
Fujun Luan, Sylvain Paris, Eli Shechtman, Kavita Bala

This paper introduces a deep-learning approach to photographic style transfer that handles a large variety of image content while faithfully transferring the reference style. Our approach builds upon the recent work on painterly transfer that separates style from the content of an image by considering different layers of a neural network. However, as is, this approach is not suitable for photorealistic style transfer. Even when both the input and reference images are photographs, the output still exhibits distortions reminiscent of a painting. Our contribution is to constrain the transformation from the input to the output to be locally affine in colorspace, and to express this constraint as a custom fully differentiable energy term. We show that this approach successfully suppresses distortion and yields satisfying photorealistic style transfers in a broad variety of scenarios, including transfer of the time of day, weather, season, and artistic edits.

  
Access Paper or Ask Questions

Salienteye: Maximizing Engagement While Maintaining Artistic Style on Instagram Using Deep Neural Networks

Jun 13, 2020
Lili Wang, Ruibo Liu, Soroush Vosoughi

Instagram has become a great venue for amateur and professional photographers alike to showcase their work. It has, in other words, democratized photography. Generally, photographers take thousands of photos in a session, from which they pick a few to showcase their work on Instagram. Photographers trying to build a reputation on Instagram have to strike a balance between maximizing their followers' engagement with their photos, while also maintaining their artistic style. We used transfer learning to adapt Xception, which is a model for object recognition trained on the ImageNet dataset, to the task of engagement prediction and utilized Gram matrices generated from VGG19, another object recognition model trained on ImageNet, for the task of style similarity measurement on photos posted on Instagram. Our models can be trained on individual Instagram accounts to create personalized engagement prediction and style similarity models. Once trained on their accounts, users can have new photos sorted based on predicted engagement and style similarity to their previous work, thus enabling them to upload photos that not only have the potential to maximize engagement from their followers but also maintain their style of photography. We trained and validated our models on several Instagram accounts, showing it to be adept at both tasks, also outperforming several baseline models and human annotators.

* Proceedings of the 2020 International Conference on Multimedia Retrieval. 2020 
  
Access Paper or Ask Questions

DeepObjStyle: Deep Object-based Photo Style Transfer

Dec 11, 2020
Indra Deep Mastan, Shanmuganathan Raman

One of the major challenges of style transfer is the appropriate image features supervision between the output image and the input (style and content) images. An efficient strategy would be to define an object map between the objects of the style and the content images. However, such a mapping is not well established when there are semantic objects of different types and numbers in the style and the content images. It also leads to content mismatch in the style transfer output, which could reduce the visual quality of the results. We propose an object-based style transfer approach, called DeepObjStyle, for the style supervision in the training data-independent framework. DeepObjStyle preserves the semantics of the objects and achieves better style transfer in the challenging scenario when the style and the content images have a mismatch of image features. We also perform style transfer of images containing a word cloud to demonstrate that DeepObjStyle enables an appropriate image features supervision. We validate the results using quantitative comparisons and user studies.

  
Access Paper or Ask Questions

Face Sketch Synthesis with Style Transfer using Pyramid Column Feature

Sep 18, 2020
Chaofeng Chen, Xiao Tan, Kwan-Yee K. Wong

In this paper, we propose a novel framework based on deep neural networks for face sketch synthesis from a photo. Imitating the process of how artists draw sketches, our framework synthesizes face sketches in a cascaded manner. A content image is first generated that outlines the shape of the face and the key facial features. Textures and shadings are then added to enrich the details of the sketch. We utilize a fully convolutional neural network (FCNN) to create the content image, and propose a style transfer approach to introduce textures and shadings based on a newly proposed pyramid column feature. We demonstrate that our style transfer approach based on the pyramid column feature can not only preserve more sketch details than the common style transfer method, but also surpasses traditional patch based methods. Quantitative and qualitative evaluations suggest that our framework outperforms other state-of-the-arts methods, and can also generalize well to different test images. Codes are available at https://github.com/chaofengc/Face-Sketch

* WACV2018 
  
Access Paper or Ask Questions

Resolution enhancement in the recovery of underdrawings via style transfer by generative adversarial deep neural networks

Jan 30, 2021
George Cann, Anthony Bourached, Ryan-Rhys Griffiths, David Stork

We apply generative adversarial convolutional neural networks to the problem of style transfer to underdrawings and ghost-images in x-rays of fine art paintings with a special focus on enhancing their spatial resolution. We build upon a neural architecture developed for the related problem of synthesizing high-resolution photo-realistic image from semantic label maps. Our neural architecture achieves high resolution through a hierarchy of generators and discriminator sub-networks, working throughout a range of spatial resolutions. This coarse-to-fine generator architecture can increase the effective resolution by a factor of eight in each spatial direction, or an overall increase in number of pixels by a factor of 64. We also show that even just a few examples of human-generated image segmentations can greatly improve -- qualitatively and quantitatively -- the generated images. We demonstrate our method on works such as Leonardo's Madonna of the carnation and the underdrawing in his Virgin of the rocks, which pose several special problems in style transfer, including the paucity of representative works from which to learn and transfer style information.

* Accepted for Publication at Computer Vision and Art Analysis, IS&T, Springfield, VA, 2021 
  
Access Paper or Ask Questions

UMFA: A photorealistic style transfer method based on U-Net and multi-layer feature aggregation

Aug 13, 2021
D. Y. Rao, X. J. Wu, H. Li, J. Kittler, T. Y. Xu

In this paper, we propose a photorealistic style transfer network to emphasize the natural effect of photorealistic image stylization. In general, distortion of the image content and lacking of details are two typical issues in the style transfer field. To this end, we design a novel framework employing the U-Net structure to maintain the rich spatial clues, with a multi-layer feature aggregation (MFA) method to simultaneously provide the details obtained by the shallow layers in the stylization processing. In particular, an encoder based on the dense block and a decoder form a symmetrical structure of U-Net are jointly staked to realize an effective feature extraction and image reconstruction. Besides, a transfer module based on MFA and "adaptive instance normalization" (AdaIN) is inserted in the skip connection positions to achieve the stylization. Accordingly, the stylized image possesses the texture of a real photo and preserves rich content details without introducing any mask or post-processing steps. The experimental results on public datasets demonstrate that our method achieves a more faithful structural similarity with a lower style loss, reflecting the effectiveness and merit of our approach.

  
Access Paper or Ask Questions

Bridging Unpaired Facial Photos And Sketches By Line-drawings

Feb 25, 2021
Meimei Shang, Fei Gao, Xiang Li, Jingjie Zhu, Lingna Dai

In this paper, we propose a novel method to learn face sketch synthesis models by using unpaired data. Our main idea is bridging the photo domain $\mathcal{X}$ and the sketch domain $Y$ by using the line-drawing domain $\mathcal{Z}$. Specially, we map both photos and sketches to line-drawings by using a neural style transfer method, i.e. $F: \mathcal{X}/\mathcal{Y} \mapsto \mathcal{Z}$. Consequently, we obtain \textit{pseudo paired data} $(\mathcal{Z}, \mathcal{Y})$, and can learn the mapping $G:\mathcal{Z} \mapsto \mathcal{Y}$ in a supervised learning manner. In the inference stage, given a facial photo, we can first transfer it to a line-drawing and then to a sketch by $G \circ F$. Additionally, we propose a novel stroke loss for generating different types of strokes. Our method, termed sRender, accords well with human artists' rendering process. Experimental results demonstrate that sRender can generate multi-style sketches, and significantly outperforms existing unpaired image-to-image translation methods.

* accepted by ICASSP2021 
  
Access Paper or Ask Questions
<<
1
2
3
4
5
6
7
8
9
>>