For socially sensitive tasks like hate speech detection, the quality of explanations from Large Language Models (LLMs) is crucial for factors like user trust and model alignment. While Persona prompting (PP) is increasingly used as a way to steer model towards user-specific generation, its effect on model rationales remains underexplored. We investigate how LLM-generated rationales vary when conditioned on different simulated demographic personas. Using datasets annotated with word-level rationales, we measure agreement with human annotations from different demographic groups, and assess the impact of PP on model bias and human alignment. Our evaluation across three LLMs results reveals three key findings: (1) PP improving classification on the most subjective task (hate speech) but degrading rationale quality. (2) Simulated personas fail to align with their real-world demographic counterparts, and high inter-persona agreement shows models are resistant to significant steering. (3) Models exhibit consistent demographic biases and a strong tendency to over-flag content as harmful, regardless of PP. Our findings reveal a critical trade-off: while PP can improve classification in socially-sensitive tasks, it often comes at the cost of rationale quality and fails to mitigate underlying biases, urging caution in its application.
Recent advances in Text-to-Speech (TTS) systems have substantially increased the realism of synthetic speech, raising new challenges for audio deepfake detection. This work presents a comparative evaluation of three state-of-the-art TTS models--Dia2, Maya1, and MeloTTS--representing streaming, LLM-based, and non-autoregressive architectures. A corpus of 12,000 synthetic audio samples was generated using the Daily-Dialog dataset and evaluated against four detection frameworks, including semantic, structural, and signal-level approaches. The results reveal significant variability in detector performance across generative mechanisms: models effective against one TTS architecture may fail against others, particularly LLM-based synthesis. In contrast, a multi-view detection approach combining complementary analysis levels demonstrates robust performance across all evaluated models. These findings highlight the limitations of single-paradigm detectors and emphasize the necessity of integrated detection strategies to address the evolving landscape of audio deepfake threats.
Adapting automatic speech recognition (ASR) systems based on large language models (LLMs) to new domains using text-only data is a significant yet underexplored challenge. Standard fine-tuning of the LLM on target-domain text often disrupts the critical alignment between speech and text modalities learned by the projector, degrading performance. We introduce a novel text-only adaptation method that emulates the audio projection task by treating it as a text denoising task. Our approach thus trains the LLM to recover clean transcripts from noisy inputs. This process effectively adapts the model to a target domain while preserving cross-modal alignment. Our solution is lightweight, requiring no architectural changes or additional parameters. Extensive evaluation on two datasets demonstrates up to 22.1% relative improvement, outperforming recent state-of-the-art text-only adaptation methods.
Audio watermarking embeds auxiliary information into speech while maintaining speaker identity, linguistic content, and perceptual quality. Although recent advances in neural and digital signal processing-based watermarking methods have improved imperceptibility and embedding capacity, robustness is still primarily assessed against conventional distortions such as compression, additive noise, and resampling. However, the rise of deep learning-based attacks introduces novel and significant threats to watermark security. In this work, we investigate self voice conversion as a universal, content-preserving attack against audio watermarking systems. Self voice conversion remaps a speaker's voice to the same identity while altering acoustic characteristics through a voice conversion model. We demonstrate that this attack severely degrades the reliability of state-of-the-art watermarking approaches and highlight its implications for the security of modern audio watermarking techniques.
Current speech LLMs bridge speech foundation models to LLMs using projection layers, training all of these components on speech instruction data. This strategy is computationally intensive and susceptible to task and prompt overfitting. We present SpeechMapper, a cost-efficient speech-to-LLM-embedding training approach that mitigates overfitting, enabling more robust and generalizable models. Our model is first pretrained without the LLM on inexpensive hardware, and then efficiently attached to the target LLM via a brief 1K-step instruction tuning (IT) stage. Through experiments on speech translation and spoken question answering, we demonstrate the versatility of SpeechMapper's pretrained block, presenting results for both task-agnostic IT, an ASR-based adaptation strategy that does not train in the target task, and task-specific IT. In task-agnostic settings, Speechmapper rivals the best instruction-following speech LLM from IWSLT25, despite never being trained on these tasks, while in task-specific settings, it outperforms this model across many datasets, despite requiring less data and compute. Overall, SpeechMapper offers a practical and scalable approach for efficient, generalizable speech-LLM integration without large-scale IT.
Self-supervised learning (SSL) has transformed speech processing, yet its reliance on massive pre-training datasets remains a bottleneck. While robustness is often attributed to scale and diversity, the role of the data distribution is less understood. We systematically examine how curated subsets of pre-training data influence Automatic Speech Recognition (ASR) performance. Surprisingly, optimizing for acoustic, speaker, or linguistic diversity yields no clear improvements over random sampling. Instead, we find that prioritizing the longest utterances achieves superior ASR results while using only half the original dataset, reducing pre-training time by 24% on a large corpora. These findings suggest that for pre-training speech SSL models, data length is a more critical factor than either data diversity or overall data quantity for performance and efficiency, offering a new perspective for data selection strategies in SSL speech processing.
This work investigates how emotional speech and generative strategies affect ASR performance. We analyze speech synthesized from three emotional TTS models and find that substitution errors dominate, with emotional expressiveness varying across models. Based on these insights, we introduce two generative strategies: one using transcription correctness and another using emotional salience, to construct fine-tuning subsets. Results show consistent WER improvements on real emotional datasets without noticeable degradation on clean LibriSpeech utterances. The combined strategy achieves the strongest gains, particularly for expressive speech. These findings highlight the importance of targeted augmentation for building emotion-aware ASR systems.
Online hate on social media ranges from overt slurs and threats (\emph{hard hate speech}) to \emph{soft hate speech}: discourse that appears reasonable on the surface but uses framing and value-based arguments to steer audiences toward blaming or excluding a target group. We hypothesize that current moderation systems, largely optimized for surface toxicity cues, are not robust to this reasoning-driven hostility, yet existing benchmarks do not measure this gap systematically. We introduce \textbf{\textsc{SoftHateBench}}, a generative benchmark that produces soft-hate variants while preserving the underlying hostile standpoint. To generate soft hate, we integrate the \emph{Argumentum Model of Topics} (AMT) and \emph{Relevance Theory} (RT) in a unified framework: AMT provides the backbone argument structure for rewriting an explicit hateful standpoint into a seemingly neutral discussion while preserving the stance, and RT guides generation to keep the AMT chain logically coherent. The benchmark spans \textbf{7} sociocultural domains and \textbf{28} target groups, comprising \textbf{4,745} soft-hate instances. Evaluations across encoder-based detectors, general-purpose LLMs, and safety models show a consistent drop from hard to soft tiers: systems that detect explicit hostility often fail when the same stance is conveyed through subtle, reasoning-based language. \textcolor{red}{\textbf{Disclaimer.} Contains offensive examples used solely for research.}
X-Codec-2.0 has shown strong performance in neural audio compression and multilingual speech modeling, operating at a 50 Hz latent rate and a 16 kHz sampling rate using frozen HuBERT features. While effective, this configuration limits temporal efficiency and audio fidelity. In this work, we explore a simple and effective modification by introducing additional pooling and increasing the decoder hop size. This reduces the latent rate from 50 Hz to 25 Hz and simultaneously raises the output sampling rate from 16 kHz to 24 kHz, improving efficiency and perceptual quality without altering the core architecture. Evaluated on the multilingual Common Voice 17 test set, the proposed configuration achieves a 0.29 MOS improvement over the original X-Codec-2.0 baseline based on UTMOSv2, and attains the best reported performance among all codecs operating at 25 Hz. The source code, checkpoints, and generation comparisons are released at \href{https://huggingface.co/Scicom-intl/xcodec2-25TPS-24k}{https://huggingface.co/Scicom-intl/xcodec2-25TPS-24k}.
The performance evaluation remains a complex challenge in audio separation, and existing evaluation metrics are often misaligned with human perception, course-grained, relying on ground truth signals. On the other hand, subjective listening tests remain the gold standard for real-world evaluation, but they are expensive, time-consuming, and difficult to scale. This paper addresses the growing need for automated systems capable of evaluating audio separation without human intervention. The proposed evaluation metric, SAM Audio Judge (SAJ), is a multimodal fine-grained reference-free objective metric, which shows highly alignment with human perceptions. SAJ supports three audio domains (speech, music and general sound events) and three prompt inputs (text, visual and span), covering four different dimensions of evaluation (recall, percision, faithfulness, and overall). SAM Audio Judge also shows potential applications in data filtering, pseudo-labeling large datasets and reranking in audio separation models. We release our code and pre-trained models at: https://github.com/facebookresearch/sam-audio.