CLSP
Abstract:Speech quality assessment (SQA) aims to predict the perceived quality of speech signals under a wide range of distortions. It is inherently connected to speech enhancement (SE), which seeks to improve speech quality by removing unwanted signal components. While SQA models are widely used to evaluate SE performance, their potential to guide SE training remains underexplored. In this work, we investigate a training framework that leverages a SQA model, trained to predict multiple evaluation metrics from a public SE leaderboard, as a supervisory signal for SE. This approach addresses a key limitation of conventional SE objectives, such as SI-SNR, which often fail to align with perceptual quality and generalize poorly across evaluation metrics. Moreover, it enables training on real-world data where clean references are unavailable. Experiments on both simulated and real-world test sets show that SQA-guided training consistently improves performance across a range of quality metrics.
Abstract:Discrete audio tokens are compact representations that aim to preserve perceptual quality, phonetic content, and speaker characteristics while enabling efficient storage and inference, as well as competitive performance across diverse downstream tasks.They provide a practical alternative to continuous features, enabling the integration of speech and audio into modern large language models (LLMs). As interest in token-based audio processing grows, various tokenization methods have emerged, and several surveys have reviewed the latest progress in the field. However, existing studies often focus on specific domains or tasks and lack a unified comparison across various benchmarks. This paper presents a systematic review and benchmark of discrete audio tokenizers, covering three domains: speech, music, and general audio. We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream performance, and acoustic language modeling, and analyze trade-offs through controlled ablation studies. Our findings highlight key limitations, practical considerations, and open challenges, providing insight and guidance for future research in this rapidly evolving area. For more information, including our main results and tokenizer database, please refer to our website: https://poonehmousavi.github.io/dates-website/.
Abstract:Speech-to-speech translation (S2ST) has been advanced with large language models (LLMs), which are fine-tuned on discrete speech units. In such approaches, modality adaptation from text to speech has been an issue. LLMs are trained on text-only data, which presents challenges to adapt them to speech modality with limited speech-to-speech data. To address the training difficulty, we propose scheduled interleaved speech--text training in this study. We use interleaved speech--text units instead of speech units during training, where aligned text tokens are interleaved at the word level. We gradually decrease the ratio of text as training progresses, to facilitate progressive modality adaptation from text to speech. We conduct experimental evaluations by fine-tuning LLaMA3.2-1B for S2ST on the CVSS dataset. We show that the proposed method consistently improves the translation performances, especially for languages with limited training data.
Abstract:Accurate, low-latency endpointing is crucial for effective spoken dialogue systems. While traditional endpointers often rely on spectrum-based audio features, this work proposes real-time speech endpointing for multi-turn dialogues using streaming, low-bitrate Neural Audio Codec (NAC) features, building upon recent advancements in neural audio codecs. To further reduce cutoff errors, we introduce a novel label delay training scheme. At a fixed median latency of 160 ms, our combined NAC and label delay approach achieves significant relative cutoff error reductions: 42.7% for a single-stream endpointer and 37.5% for a two-stream configuration, compared to baseline methods. Finally, we demonstrate efficient integration with a codec-based pretrained speech large language model, improving its median response time by 1200 ms and reducing its cutoff error by 35%.
Abstract:This paper addresses the critical need for improved explainability in text-based depression detection. While offering predictive outcomes, current solutions often overlook the understanding of model predictions which can hinder trust in the system. We propose the use of Masked Hard Instance Mining (MHIM) to enhance the explainability in the depression detection task. MHIM strategically masks attention weights within the model, compelling it to distribute attention across a wider range of salient features. We evaluate MHIM on two datasets representing distinct languages: Thai (Thai-Maywe) and English (DAIC-WOZ). Our results demonstrate that MHIM significantly improves performance in terms of both prediction accuracy and explainability metrics.
Abstract:Speech signal analysis poses significant challenges, particularly in tasks such as speech quality evaluation and profiling, where the goal is to predict multiple perceptual and objective metrics. For instance, metrics like PESQ (Perceptual Evaluation of Speech Quality), STOI (Short-Time Objective Intelligibility), and MOS (Mean Opinion Score) each capture different aspects of speech quality. However, these metrics often have different scales, assumptions, and dependencies, making joint estimation non-trivial. To address these issues, we introduce ARECHO (Autoregressive Evaluation via Chain-based Hypothesis Optimization), a chain-based, versatile evaluation system for speech assessment grounded in autoregressive dependency modeling. ARECHO is distinguished by three key innovations: (1) a comprehensive speech information tokenization pipeline; (2) a dynamic classifier chain that explicitly captures inter-metric dependencies; and (3) a two-step confidence-oriented decoding algorithm that enhances inference reliability. Experiments demonstrate that ARECHO significantly outperforms the baseline framework across diverse evaluation scenarios, including enhanced speech analysis, speech generation evaluation, and noisy speech evaluation. Furthermore, its dynamic dependency modeling improves interpretability by capturing inter-metric relationships.
Abstract:Multilingual speech processing with self-supervised or supervised pre-trained Speech Foundation Models (SFM) has achieved strong performance on tasks like Language Identification (LID) and Automatic Speech Recognition (ASR). However, these models struggle with limited resources during fine-tuning. This paper enhances multilingual LID and ASR on ML-SUPERB 2.0 by exploring multiple strategies for adapting SFMs, including frozen upstream training, partial fine-tuning, and low-rank adaptation. Furthermore, we employ data augmentation to mitigate performance gaps in few-shot settings and introduce LID Connectionist Temporal Classification (CTC) loss for regularization. Our approach achieves a 14% relative improvement in LID accuracy and a 30% relative reduction in ASR CER over the baseline on ML-SUPERB 2.0, securing second place in the Interspeech 2025 ML-SUPERB 2.0 Challenge.
Abstract:There has been a growing effort to develop universal speech enhancement (SE) to handle inputs with various speech distortions and recording conditions. The URGENT Challenge series aims to foster such universal SE by embracing a broad range of distortion types, increasing data diversity, and incorporating extensive evaluation metrics. This work introduces the Interspeech 2025 URGENT Challenge, the second edition of the series, to explore several aspects that have received limited attention so far: language dependency, universality for more distortion types, data scalability, and the effectiveness of using noisy training data. We received 32 submissions, where the best system uses a discriminative model, while most other competitive ones are hybrid methods. Analysis reveals some key findings: (i) some generative or hybrid approaches are preferred in subjective evaluations over the top discriminative model, and (ii) purely generative SE models can exhibit language dependency.
Abstract:Subjective listening tests remain the golden standard for speech quality assessment, but are costly, variable, and difficult to scale. In contrast, existing objective metrics, such as PESQ, F0 correlation, and DNSMOS, typically capture only specific aspects of speech quality. To address these limitations, we introduce Uni-VERSA, a unified network that simultaneously predicts various objective metrics, encompassing naturalness, intelligibility, speaker characteristics, prosody, and noise, for a comprehensive evaluation of speech signals. We formalize its framework, evaluation protocol, and applications in speech enhancement, synthesis, and quality control. A benchmark based on the URGENT24 challenge, along with a baseline leveraging self-supervised representations, demonstrates that Uni-VERSA provides a viable alternative to single-aspect evaluation methods. Moreover, it aligns closely with human perception, making it a promising approach for future speech quality assessment.
Abstract:Speech foundation models achieve strong generalization across languages and acoustic conditions, but require significant computational resources for inference. In the context of speech foundation models, pruning techniques have been studied that dynamically optimize model structures based on the target audio leveraging external context. In this work, we extend this line of research and propose context-driven dynamic pruning, a technique that optimizes the model computation depending on the context between different input frames and additional context during inference. We employ the Open Whisper-style Speech Model (OWSM) and incorporate speaker embeddings, acoustic event embeddings, and language information as additional context. By incorporating the speaker embedding, our method achieves a reduction of 56.7 GFLOPs while improving BLEU scores by a relative 25.7% compared to the fully fine-tuned OWSM model.