Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Personalized learning systems have emerged as a promising approach to enhance student outcomes by tailoring educational content, pacing, and feedback to individual needs. However, most existing systems remain fragmented, specializing in either knowledge tracing, diagnostic modeling, or resource recommendation, but rarely integrating these components into a cohesive adaptive cycle. In this paper, we propose ALIGNAgent (Adaptive Learner Intelligence for Gap Identification and Next-step guidance), a multi-agent educational framework designed to deliver personalized learning through integrated knowledge estimation, skill-gap identification, and targeted resource recommendation.ALIGNAgent begins by processing student quiz performance, gradebook data, and learner preferences to generate topic-level proficiency estimates using a Skill Gap Agent that employs concept-level diagnostic reasoning to identify specific misconceptions and knowledge deficiencies. After identifying skill gaps, the Recommender Agent retrieves preference-aware learning materials aligned with diagnosed deficiencies, implementing a continuous feedback loop where interventions occur before advancing to subsequent topics. Extensive empirical evaluation on authentic datasets from two undergraduate computer science courses demonstrates ALIGNAgent's effectiveness, with GPT-4o-based agents achieving precision of 0.87-0.90 and F1 scores of 0.84-0.87 in knowledge proficiency estimation validated against actual exam performance.
Authorship verification (AV) is the task of determining whether two texts were written by the same author and has been studied extensively, predominantly for English data. In contrast, large-scale benchmarks and systematic evaluations for other languages remain scarce. We address this gap by introducing GerAV, a comprehensive benchmark for German AV comprising over 600k labeled text pairs. GerAV is built from Twitter and Reddit data, with the Reddit part further divided into in-domain and cross-domain message-based subsets, as well as a profile-based subset. This design enables controlled analysis of the effects of data source, topical domain, and text length. Using the provided training splits, we conduct a systematic evaluation of strong baselines and state-of-the-art models and find that our best approach, a fine-tuned large language model, outperforms recent baselines by up to 0.09 absolute F1 score and surpasses GPT-5 in a zero-shot setting by 0.08. We further observe a trade-off between specialization and generalization: models trained on specific data types perform best under matching conditions but generalize less well across data regimes, a limitation that can be mitigated by combining training sources. Overall, GerAV provides a challenging and versatile benchmark for advancing research on German and cross-domain AV.
Human cognition exhibits strong circadian modulation, yet its influence on high-dimensional semantic behavior remains poorly understood. Using large-scale Reddit data, we quantify time-of-day variation in language use by embedding text into a pretrained transformer model and measuring semantic entropy as an index of linguistic exploration-exploitation, for which we show a robust circadian rhythmicity that could be entrained by seasonal light cues. Distinguishing between local and global semantic entropy reveals a systematic temporal dissociation: local semantic exploration peaks in the morning, reflecting broader exploration of semantic space, whereas global semantic diversity peaks later in the day as submissions accumulate around already established topics, consistent with "rich-get-richer" dynamics. These patterns are not explained by sentiment or affective valence, indicating that semantic exploration captures a cognitive dimension distinct from mood. The observed temporal structure aligns with known diurnal patterns in neuromodulatory systems, suggesting that biological circadian rhythms extend to the semantic domain.
Open-set learning and discovery (OSLD) is a challenging machine learning task in which samples from new (unknown) classes can appear at test time. It can be seen as a generalization of zero-shot learning, where the new classes are not known a priori, hence involving the active discovery of new classes. While zero-shot learning has been extensively studied in text classification, especially with the emergence of pre-trained language models, open-set learning and discovery is a comparatively new setup for the text domain. To this end, we introduce the first multilingual open-set learning and discovery (MOSLD) benchmark for text categorization by topic, comprising 960K data samples across 12 languages. To construct the benchmark, we (i) rearrange existing datasets and (ii) collect new data samples from the news domain. Moreover, we propose a novel framework for the OSLD task, which integrates multiple stages to continuously discover and learn new classes. We evaluate several language models, including our own, to obtain results that can be used as reference for future work. We release our benchmark at https://github.com/Adriana19Valentina/MOSLD-Bench.
We study sentence-level identification of the 19 values in the Schwartz motivational continuum as a concrete formulation of human value detection in text. The setting - out-of-context sentences from news and political manifestos - features sparse moral cues and severe class imbalance. This combination makes fine-grained sentence-level value detection intrinsically difficult, even for strong modern neural models. We first operationalize a binary moral presence task ("does any value appear?") and show that it is learnable from single sentences (positive-class F1 $\approx$ 0.74 with calibrated thresholds). We then compare a presence-gated hierarchy to a direct multi-label classifier under matched compute, both based on DeBERTa-base and augmented with lightweight signals (prior-sentence context, LIWC-22/eMFD/MJD lexica, and topic features). The hierarchy does not outperform direct prediction, indicating that gate recall limits downstream gains. We also benchmark instruction-tuned LLMs - Gemma 2 9B, Llama 3.1 8B, Mistral 8B, and Qwen 2.5 7B - in zero-/few-shot and QLoRA setups and build simple ensembles; a soft-vote supervised ensemble reaches macro-F1 0.332, significantly surpassing the best single supervised model and exceeding prior English-only baselines. Overall, in this scenario, lightweight signals and small ensembles yield the most reliable improvements, while hierarchical gating offers limited benefit. We argue that, under an 8 GB single-GPU constraint and at the 7-9B scale, carefully tuned supervised encoders remain a strong and compute-efficient baseline for structured human value detection, and we outline how richer value structure and sentence-in-document context could further improve performance.
The quality of answers generated by large language models (LLMs) in retrieval-augmented generation (RAG) is largely influenced by the contextual information contained in the retrieved documents. A key challenge for improving RAG is to predict both the utility of retrieved documents -- quantified as the performance gain from using context over generation without context -- and the quality of the final answers in terms of correctness and relevance. In this paper, we define two prediction tasks within RAG. The first is retrieval performance prediction (RPP), which estimates the utility of retrieved documents. The second is generation performance prediction (GPP), which estimates the final answer quality. We hypothesise that in RAG, the topical relevance of retrieved documents correlates with their utility, suggesting that query performance prediction (QPP) approaches can be adapted for RPP and GPP. Beyond these retriever-centric signals, we argue that reader-centric features, such as the LLM's perplexity of the retrieved context conditioned on the input query, can further enhance prediction accuracy for both RPP and GPP. Finally, we propose that features reflecting query-agnostic document quality and readability can also provide useful signals to the predictions. We train linear regression models with the above categories of predictors for both RPP and GPP. Experiments on the Natural Questions (NQ) dataset show that combining predictors from multiple feature categories yields the most accurate estimates of RAG performance.
With the in-depth integration of mobile Internet and widespread adoption of social platforms, user-generated content in the Chinese cyberspace has witnessed explosive growth. Among this content, the proliferation of toxic comments poses severe challenges to individual mental health, community atmosphere and social trust. Owing to the strong context dependence, cultural specificity and rapid evolution of Chinese cyber language, toxic expressions are often conveyed through complex forms such as homophones and metaphors, imposing notable limitations on traditional detection methods. To address this issue, this review focuses on the core topic of natural language processing based toxic comment detection in the Chinese cyberspace, systematically collating and critically analyzing the research progress and key challenges in this field. This review first defines the connotation and characteristics of Chinese toxic comments, and analyzes the platform ecology and transmission mechanisms they rely on. It then comprehensively reviews the construction methods and limitations of existing public datasets, and proposes a novel fine-grained and scalable framework for toxic comment definition and classification, along with corresponding data annotation and quality assessment strategies. We systematically summarize the evolutionary path of detection models from traditional methods to deep learning, with special emphasis on the importance of interpretability in model design. Finally, we thoroughly discuss the open challenges faced by current research and provide forward-looking suggestions for future research directions.
Query expansion is a long-standing technique to mitigate vocabulary mismatch in ad hoc Information Retrieval. Pseudo-relevance feedback methods, such as RM3, estimate an expanded query model from the top-ranked documents, but remain vulnerable to topic drift when early results include noisy or tangential content. Recent approaches instead prompt Large Language Models to generate synthetic expansions or query variants. While effective, these methods risk hallucinations and misalignment with collection-specific terminology. We propose a hybrid alternative that preserves the robustness and interpretability of classical PRF while leveraging LLM semantic judgement. Our method inserts an LLM-based filtering stage prior to RM3 estimation: the LLM judges the documents in the initial top-$k$ ranking, and RM3 is computed only over those accepted as relevant. This simple intervention improves over blind PRF and a strong baseline across several datasets and metrics.
Spoken conversational systems require more than accurate speech generation to have human-like conversations: to feel natural and engaging, they must produce conversational behaviour that adapts dynamically to the context. Current spoken conversational systems, however, rarely allow such customization, limiting their naturalness and usability. In this work, we present the first open, instruction-following full-duplex conversational speech model that can be trained efficiently under typical academic resource constraints. By keeping the audio encoder frozen and finetuning only the language model, our model requires just 2,000 hours of data, without relying on large-scale pretraining or multi-stage optimization. The model can follow explicit instructions to control speaker voice, conversation topic, conversational behaviour (e.g., backchanneling and interruptions), and dialogue initiation. We propose a single-stage training protocol and systematically analyze design choices. Both the model and training code will be released to enable reproducible research on controllable full-duplex speech systems.
The increasing prevalence of Large Language Models (LLMs) demands effective safeguards for their operation, particularly concerning their tendency to generate out-of-context responses. A key challenge is accurately detecting when LLMs stray from expected conversational norms, manifesting as topic shifts, factual inaccuracies, or outright hallucinations. Traditional anomaly detection struggles to directly apply within contextual semantics. This paper outlines our experiment in exploring the use of Representation Engineering (RepE) and One-Class Support Vector Machine (OCSVM) to identify subspaces within the internal states of LLMs that represent a specific context. By training OCSVM on in-context examples, we establish a robust boundary within the LLM's hidden state latent space. We evaluate out study with two open source LLMs - Llama and Qwen models in specific contextual domain. Our approach entailed identifying the optimal layers within the LLM's internal state subspaces that strongly associates with the context of interest. Our evaluation results showed promising results in identifying the subspace for a specific context. Aside from being useful in detecting in or out of context conversation threads, this research work contributes to the study of better interpreting LLMs.