Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
One-to-one tutoring is widely considered the gold standard for personalized education, yet it remains prohibitively expensive to scale. To evaluate whether generative AI might help expand access to this resource, we conducted an exploratory randomized controlled trial (RCT) with $N = 165$ students across five UK secondary schools. We integrated LearnLM -- a generative AI model fine-tuned for pedagogy -- into chat-based tutoring sessions on the Eedi mathematics platform. In the RCT, expert tutors directly supervised LearnLM, with the remit to revise each message it drafted until they would be satisfied sending it themselves. LearnLM proved to be a reliable source of pedagogical instruction, with supervising tutors approving 76.4% of its drafted messages making zero or minimal edits (i.e., changing only one or two characters). This translated into effective tutoring support: students guided by LearnLM performed at least as well as students chatting with human tutors on each learning outcome we measured. In fact, students who received support from LearnLM were 5.5 percentage points more likely to solve novel problems on subsequent topics (with a success rate of 66.2%) than those who received tutoring from human tutors alone (rate of 60.7%). In interviews, tutors highlighted LearnLM's strength at drafting Socratic questions that encouraged deeper reflection from students, with multiple tutors even reporting that they learned new pedagogical practices from the model. Overall, our results suggest that pedagogically fine-tuned AI tutoring systems may play a promising role in delivering effective, individualized learning support at scale.
Cognitive diagnosis is an essential research topic in intelligent education, aimed at assessing the level of mastery of different skills by students. So far, many research works have used deep learning models to explore the complex interactions between students, questions, and skills. However, the performance of existing method is frequently limited by the long-tailed distribution and dynamic changes in the data. To address these challenges, we propose a meta-learning framework for cognitive diagnosis based on continual learning (MetaCD). This framework can alleviate the long-tailed problem by utilizing meta-learning to learn the optimal initialization state, enabling the model to achieve good accuracy on new tasks with only a small amount of data. In addition, we utilize a continual learning method named parameter protection mechanism to give MetaCD the ability to adapt to new skills or new tasks, in order to adapt to dynamic changes in data. MetaCD can not only improve the plasticity of our model on a single task, but also ensure the stability and generalization of the model on sequential tasks. Comprehensive experiments on five real-world datasets show that MetaCD outperforms other baselines in both accuracy and generalization.
Semantic text classification has undergone significant advances in recent years due to the rise of large language models (LLMs) and their high dimensional embeddings. While LLM-embeddings are frequently used to store and retrieve text by semantic similarity in vector databases, the global structure semantic relationships in text corpora often remains opaque. Herein we propose a nested density clustering approach, to infer hierarchical trees of semantically related texts. The method starts by identifying texts of strong semantic similarity as it searches for dense clusters in LLM embedding space. As the density criterion is gradually relaxed, these dense clusters merge into more diffuse clusters, until the whole dataset is represented by a single cluster -- the root of the tree. By embedding dense clusters into increasingly diffuse ones, we construct a tree structure that captures hierarchical semantic relationships among texts. We outline how this approach can be used to classify textual data for abstracts of scientific abstracts as a case study. This enables the data-driven discovery research areas and their subfields without predefined categories. To evaluate the general applicability of the method, we further apply it to established benchmark datasets such as the 20 Newsgroups and IMDB 50k Movie Reviews, demonstrating its robustness across domains. Finally we discuss possible applications on scientometrics, topic evolution, highlighting how nested density trees can reveal semantic structure and evolution in textual datasets.
Theme detection is a fundamental task in user-centric dialogue systems, aiming to identify the latent topic of each utterance without relying on predefined schemas. Unlike intent induction, which operates within fixed label spaces, theme detection requires cross-dialogue consistency and alignment with personalized user preferences, posing significant challenges. Existing methods often struggle with sparse, short utterances for accurate topic representation and fail to capture user-level thematic preferences across dialogues. To address these challenges, we propose CATCH (Controllable Theme Detection with Contextualized Clustering and Hierarchical Generation), a unified framework that integrates three core components: (1) context-aware topic representation, which enriches utterance-level semantics using surrounding topic segments; (2) preference-guided topic clustering, which jointly models semantic proximity and personalized feedback to align themes across dialogue; and (3) a hierarchical theme generation mechanism designed to suppress noise and produce robust, coherent topic labels. Experiments on a multi-domain customer dialogue benchmark (DSTC-12) demonstrate the effectiveness of CATCH with 8B LLM in both theme clustering and topic generation quality.
Multi-annotator medical image segmentation is an important research problem, but requires annotated datasets that are expensive to collect. Dermoscopic skin lesion imaging allows human experts and AI systems to observe morphological structures otherwise not discernable from regular clinical photographs. However, currently there are no large-scale publicly available multi-annotator skin lesion segmentation (SLS) datasets with annotator-labels for dermoscopic skin lesion imaging. We introduce ISIC MultiAnnot++, a large public multi-annotator skin lesion segmentation dataset for images from the ISIC Archive. The final dataset contains 17,684 segmentation masks spanning 14,967 dermoscopic images, where 2,394 dermoscopic images have 2-5 segmentations per image, making it the largest publicly available SLS dataset. Further, metadata about the segmentation, including the annotators' skill level and segmentation tool, is included, enabling research on topics such as annotator-specific preference modeling for segmentation and annotator metadata analysis. We provide an analysis on the characteristics of this dataset, curated data partitions, and consensus segmentation masks.
Social scientists employ latent Dirichlet allocation (LDA) to find highly specific topics in large corpora, but they often struggle in this task because (1) LDA, in general, takes a significant amount of time to fit on large corpora; (2) unsupervised LDA fragments topics into sub-topics in short documents; (3) semi-supervised LDA fails to identify specific topics defined using seed words. To solve these problems, I have developed a new topic model called distributed asymmetric allocation (DAA) that integrates multiple algorithms for efficiently identifying sentences about important topics in large corpora. I evaluate the ability of DAA to identify politically important topics by fitting it to the transcripts of speeches at the United Nations General Assembly between 1991 and 2017. The results show that DAA can classify sentences significantly more accurately and quickly than LDA thanks to the new algorithms. More generally, the results demonstrate that it is important for social scientists to optimize Dirichlet priors of LDA to perform content analysis accurately.
The performance of quantum neural network models depends strongly on architectural decisions, including circuit depth, placement of parametrized operations, and data-encoding strategies. Selecting an effective architecture is challenging and closely related to the classical difficulty of choosing suitable neural-network topologies, which is computationally hard. This work investigates automated quantum-circuit construction for regression tasks and introduces a genetic-algorithm framework that discovers Reduced Regressor QNN architectures. The approach explores depth, parametrized gate configurations, and flexible data re-uploading patterns, formulating the construction of quantum regressors as an optimization process. The discovered circuits are evaluated against seventeen classical regression models on twenty-two nonlinear benchmark functions and four analytical functions. Although classical methods often achieve comparable results, they typically require far more parameters, whereas the evolved quantum models remain compact while providing competitive performance. We further analyze dataset complexity using twelve structural descriptors and show, across five increasingly challenging meta-learning scenarios, that these measures can reliably predict which quantum architecture will perform best. The results demonstrate perfect or near-perfect predictive accuracy in several scenarios, indicating that complexity metrics offer powerful and compact representations of dataset structure and can effectively guide automated model selection. Overall, this study provides a principled basis for meta-learning-driven quantum architecture design and advances the understanding of how quantum models behave in regression settings--a topic that has received limited exploration in prior work. These findings pave the way for more systematic and theoretically grounded approaches to quantum regression.




Choosing the number of topics $T$ in Latent Dirichlet Allocation (LDA) is a key design decision that strongly affects both the statistical fit and interpretability of topic models. In this work, we formulate the selection of $T$ as a discrete black-box optimization problem, where each function evaluation corresponds to training an LDA model and measuring its validation perplexity. Under a fixed evaluation budget, we compare four families of optimizers: two hand-designed evolutionary methods - Genetic Algorithm (GA) and Evolution Strategy (ES) - and two learned, amortized approaches, Preferential Amortized Black-Box Optimization (PABBO) and Sharpness-Aware Black-Box Optimization (SABBO). Our experiments show that, while GA, ES, PABBO, and SABBO eventually reach a similar band of final perplexity, the amortized optimizers are substantially more sample- and time-efficient. SABBO typically identifies a near-optimal topic number after essentially a single evaluation, and PABBO finds competitive configurations within a few evaluations, whereas GA and ES require almost the full budget to approach the same region.
Dialogue topic segmentation supports summarization, retrieval, memory management, and conversational continuity. Despite decades of work, evaluation practice remains dominated by strict boundary matching and F1-based metrics. Modern large language model (LLM) based conversational systems increasingly rely on segmentation to manage conversation history beyond fixed context windows. In such systems, unstructured context accumulation degrades efficiency and coherence. This paper introduces an evaluation framework that reports boundary density and segment alignment diagnostics (purity and coverage) alongside window-tolerant F1 (W-F1). By separating boundary scoring from boundary selection, we evaluate segmentation quality across density regimes rather than at a single operating point. Cross-dataset evaluation shows that reported performance differences often reflect annotation granularity mismatch rather than boundary placement quality alone. We evaluate structurally distinct segmentation strategies across eight dialogue datasets spanning task-oriented, open-domain, meeting-style, and synthetic interactions. Boundary-based metrics are strongly coupled to boundary density: threshold sweeps produce larger W-F1 changes than switching between methods. These findings support viewing topic segmentation as a granularity selection problem rather than prediction of a single correct boundary set. This motivates separating boundary scoring from boundary selection for analyzing and tuning segmentation under varying annotation granularities.
Public debates surrounding infrastructure and energy projects involve complex networks of stakeholders, arguments, and evolving narratives. Understanding these dynamics is crucial for anticipating controversies and informing engagement strategies, yet existing tools in media intelligence largely rely on descriptive analytics with limited transparency. This paper presents Stakeholder Suite, a framework deployed in operational contexts for mapping actors, topics, and arguments within public debates. The system combines actor detection, topic modeling, argument extraction and stance classification in a unified pipeline. Tested on multiple energy infrastructure projects as a case study, the approach delivers fine-grained, source-grounded insights while remaining adaptable to diverse domains. The framework achieves strong retrieval precision and stance accuracy, producing arguments judged relevant in 75% of pilot use cases. Beyond quantitative metrics, the tool has proven effective for operational use: helping project teams visualize networks of influence, identify emerging controversies, and support evidence-based decision-making.