Abstract:This work presents a consensus-based Bayesian framework to detect malicious user behavior in enterprise directory access graphs. By modeling directories as topics and users as agents within a multi-level interaction graph, we simulate access evolution using influence-weighted opinion dynamics. Logical dependencies between users are encoded in dynamic matrices Ci, and directory similarity is captured via a shared influence matrix W. Malicious behavior is injected as cross-component logical perturbations that violate structural norms of strongly connected components(SCCs). We apply theoretical guarantees from opinion dynamics literature to determine topic convergence and detect anomaly via scaled opinion variance. To quantify uncertainty, we introduce a Bayesian anomaly scoring mechanism that evolves over time, using both static and online priors. Simulations over synthetic access graphs validate our method, demonstrating its sensitivity to logical inconsistencies and robustness under dynamic perturbation.
Abstract:In a telecommunications network, fault alarms generated by network nodes are monitored in a Network Operations Centre (NOC) to ensure network availability and continuous network operations. The monitoring process comprises of tasks such as active alarms analysis, root alarm identification, and resolution of the underlying problem. Each network node potentially can generate alarms of different types, while nodes can be from multiple vendors, a network can have hundreds of nodes thus resulting in an enormous volume of alarms at any time. Since network nodes are inter-connected, a single fault in the network would trigger multiple sequences of alarms across a variety of nodes and from a monitoring point of view, it is a challenging task for a NOC engineer to be aware of relations between the various alarms, when trying to identify, for example, a root alarm on which an action needs to be taken. To effectively identify root alarms, it is essential to learn relation among the alarms for accurate and faster resolution. In this work we propose a novel unsupervised alarm relation learning technique Temporal Optimization (TempOpt) that is practical and overcomes the limitations of an existing class of alarm relational learning method-temporal dependency methods. Experiments have been carried on real-world network datasets, that demonstrate the improved quality of alarm relations learned by TempOpt as compared to temporal dependency method.