Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Bo Han

Understanding and Improving Early Stopping for Learning with Noisy Labels


Jun 30, 2021
Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang Niu, Tongliang Liu

* 19 pages, 5 figures 

  Access Paper or Ask Questions

Local Reweighting for Adversarial Training


Jun 30, 2021
Ruize Gao, Feng Liu, Kaiwen Zhou, Gang Niu, Bo Han, James Cheng


  Access Paper or Ask Questions

Federated Noisy Client Learning


Jun 24, 2021
Li Li, Huazhu Fu, Bo Han, Cheng-Zhong Xu, Ling Shao


  Access Paper or Ask Questions

Probabilistic Margins for Instance Reweighting in Adversarial Training


Jun 15, 2021
Qizhou Wang, Feng Liu, Bo Han, Tongliang Liu, Chen Gong, Gang Niu, Mingyuan Zhou, Masashi Sugiyama

* 17 pages, 4 figures 

  Access Paper or Ask Questions

PI-GNN: A Novel Perspective on Semi-Supervised Node Classification against Noisy Labels


Jun 14, 2021
Xuefeng Du, Tian Bian, Yu Rong, Bo Han, Tongliang Liu, Tingyang Xu, Wenbing Huang, Junzhou Huang

* 16 pages, 3 figures 

  Access Paper or Ask Questions

TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation


Jun 11, 2021
Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Bo Han, William K. Cheung, James T. Kwok


  Access Paper or Ask Questions

KRADA: Known-region-aware Domain Alignment for Open World Semantic Segmentation


Jun 11, 2021
Chenhong Zhou, Feng Liu, Chen Gong, Tongliang Liu, Bo Han, William Cheung


  Access Paper or Ask Questions

Adversarial Robustness through the Lens of Causality


Jun 11, 2021
Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard Schölkopf, Kun Zhang


  Access Paper or Ask Questions

Improving White-box Robustness of Pre-processing Defenses via Joint Adversarial Training


Jun 10, 2021
Dawei Zhou, Nannan Wang, Xinbo Gao, Bo Han, Jun Yu, Xiaoyu Wang, Tongliang Liu


  Access Paper or Ask Questions

Towards Defending against Adversarial Examples via Attack-Invariant Features


Jun 09, 2021
Dawei Zhou, Tongliang Liu, Bo Han, Nannan Wang, Chunlei Peng, Xinbo Gao


  Access Paper or Ask Questions

Reliable Adversarial Distillation with Unreliable Teachers


Jun 09, 2021
Jianing Zhu, Jiangchao Yao, Bo Han, Jingfeng Zhang, Tongliang Liu, Gang Niu, Jingren Zhou, Jianliang Xu, Hongxia Yang


  Access Paper or Ask Questions

Instance Correction for Learning with Open-set Noisy Labels


Jun 01, 2021
Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, Masashi Sugiyama


  Access Paper or Ask Questions

Sample Selection with Uncertainty of Losses for Learning with Noisy Labels


Jun 01, 2021
Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, Masashi Sugiyama


  Access Paper or Ask Questions

NoiLIn: Do Noisy Labels Always Hurt Adversarial Training?


May 31, 2021
Jingfeng Zhang, Xilie Xu, Bo Han, Tongliang Liu, Gang Niu, Lizhen Cui, Masashi Sugiyama


  Access Paper or Ask Questions

Estimating Instance-dependent Label-noise Transition Matrix using DNNs


May 27, 2021
Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, Tongliang Liu


  Access Paper or Ask Questions

Device-Cloud Collaborative Learning for Recommendation


Apr 14, 2021
Jiangchao Yao, Feng Wang, KunYang Jia, Bo Han, Jingren Zhou, Hongxia Yang


  Access Paper or Ask Questions

Learning with Group Noise


Mar 17, 2021
Qizhou Wang, Jiangchao Yao, Chen Gong, Tongliang Liu, Mingming Gong, Hongxia Yang, Bo Han


  Access Paper or Ask Questions

Meta Discovery: Learning to Discover Novel Classes given Very Limited Data


Feb 18, 2021
Haoang Chi, Feng Liu, Wenjing Yang, Long Lan, Tongliang Liu, Gang Niu, Bo Han


  Access Paper or Ask Questions

Understanding the Interaction of Adversarial Training with Noisy Labels


Feb 09, 2021
Jianing Zhu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu, Hongxia Yang, Mohan Kankanhalli, Masashi Sugiyama


  Access Paper or Ask Questions

Learning Diverse-Structured Networks for Adversarial Robustness


Feb 08, 2021
Xuefeng Du, Jingfeng Zhang, Bo Han, Tongliang Liu, Yu Rong, Gang Niu, Junzhou Huang, Masashi Sugiyama

* 26 pages, 8 figures 

  Access Paper or Ask Questions

Provably End-to-end Label-Noise Learning without Anchor Points


Feb 04, 2021
Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, Masashi Sugiyama


  Access Paper or Ask Questions

Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model


Jan 14, 2021
Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, Chen Gong


  Access Paper or Ask Questions

Extended T: Learning with Mixed Closed-set and Open-set Noisy Labels


Dec 02, 2020
Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Jiankang Deng, Jiatong Li, Yinian Mao


  Access Paper or Ask Questions

SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning


Dec 02, 2020
Zhuowei Wang, Jing Jiang, Bo Han, Lei Feng, Bo An, Gang Niu, Guodong Long


  Access Paper or Ask Questions

A Survey of Label-noise Representation Learning: Past, Present and Future


Nov 09, 2020
Bo Han, Quanming Yao, Tongliang Liu, Gang Niu, Ivor W. Tsang, James T. Kwok, Masashi Sugiyama

* The draft is kept updating; any comments and suggestions are welcome 

  Access Paper or Ask Questions

Confusable Learning for Large-class Few-Shot Classification


Nov 06, 2020
Bingcong Li, Bo Han, Zhuowei Wang, Jing Jiang, Guodong Long


  Access Paper or Ask Questions

Maximum Mean Discrepancy is Aware of Adversarial Attacks


Oct 22, 2020
Ruize Gao, Feng Liu, Jingfeng Zhang, Bo Han, Tongliang Liu, Gang Niu, Masashi Sugiyama


  Access Paper or Ask Questions

Pointwise Binary Classification with Pairwise Confidence Comparisons


Oct 05, 2020
Lei Feng, Senlin Shu, Nan Lu, Bo Han, Miao Xu, Gang Niu, Bo An, Masashi Sugiyama


  Access Paper or Ask Questions