Abstract:Recently, reducing redundant visual tokens in vision-language models (VLMs) to accelerate VLM inference has emerged as a hot topic. However, most existing methods rely on heuristics constructed based on inter-visual-token similarity or cross-modal visual-text similarity, which gives rise to certain limitations in compression performance and practical deployment. In contrast, we propose PIO-FVLM from the perspective of inference objectives, which transforms visual token compression into preserving output result invariance and selects tokens primarily by their importance to this goal. Specially, vision tokens are reordered with the guidance of token-level gradient saliency generated by our designed layer-local proxy loss, a coarse constraint from the current layer to the final result. Then the most valuable vision tokens are selected following the non-maximum suppression (NMS) principle. The proposed PIO-FVLM is training-free and compatible with FlashAttention, friendly to practical application and deployment. It can be deployed independently as an encoder-free method, or combined with encoder compression approaches like VisionZip for use as an encoder-involved method. On LLaVA-Next-7B, PIO-FVLM retains just 11.1% of visual tokens but maintains 97.2% of the original performance, with a 2.67$\times$ prefill speedup, 2.11$\times$ inference speedup, 6.22$\times$ lower FLOPs, and 6.05$\times$ reduced KV Cache overhead. Our code is available at https://github.com/ocy1/PIO-FVLM.
Abstract:Recently, diffusion models bring novel insights for Pan-sharpening and notably boost fusion precision. However, most existing models perform diffusion in the pixel space and train distinct models for different multispectral (MS) imagery, suffering from high latency and sensor-specific limitations. In this paper, we present SALAD-Pan, a sensor-agnostic latent space diffusion method for efficient pansharpening. Specifically, SALAD-Pan trains a band-wise single-channel VAE to encode high-resolution multispectral (HRMS) into compact latent representations, supporting MS images with various channel counts and establishing a basis for acceleration. Then spectral physical properties, along with PAN and MS images, are injected into the diffusion backbone through unidirectional and bidirectional interactive control structures respectively, achieving high-precision fusion in the diffusion process. Finally, a lightweight cross-spectral attention module is added to the central layer of diffusion model, reinforcing spectral connections to boost spectral consistency and further elevate fusion precision. Experimental results on GaoFen-2, QuickBird, and WorldView-3 demonstrate that SALAD-Pan outperforms state-of-the-art diffusion-based methods across all three datasets, attains a 2-3x inference speedup, and exhibits robust zero-shot (cross-sensor) capability.