Topic:Multiple Object Tracking
What is Multiple Object Tracking? Multiple object tracking is the process of tracking and following multiple objects in a video sequence.
Papers and Code
Jun 28, 2024
Abstract:Human activities are inherently complex, and even simple household tasks involve numerous object interactions. To better understand these activities and behaviors, it is crucial to model their dynamic interactions with the environment. The recent availability of affordable head-mounted cameras and egocentric data offers a more accessible and efficient means to understand dynamic human-object interactions in 3D environments. However, most existing methods for human activity modeling either focus on reconstructing 3D models of hand-object or human-scene interactions or on mapping 3D scenes, neglecting dynamic interactions with objects. The few existing solutions often require inputs from multiple sources, including multi-camera setups, depth-sensing cameras, or kinesthetic sensors. To this end, we introduce EgoGaussian, the first method capable of simultaneously reconstructing 3D scenes and dynamically tracking 3D object motion from RGB egocentric input alone. We leverage the uniquely discrete nature of Gaussian Splatting and segment dynamic interactions from the background. Our approach employs a clip-level online learning pipeline that leverages the dynamic nature of human activities, allowing us to reconstruct the temporal evolution of the scene in chronological order and track rigid object motion. Additionally, our method automatically segments object and background Gaussians, providing 3D representations for both static scenes and dynamic objects. EgoGaussian outperforms previous NeRF and Dynamic Gaussian methods in challenging in-the-wild videos and we also qualitatively demonstrate the high quality of the reconstructed models.
Via

Jul 12, 2024
Abstract:The objective of change point detection is to identify abrupt changes at potentially multiple points within a data sequence. This task is particularly challenging in the online setting where various types of changes can occur, including shifts in both the marginal and joint distributions of the data. This paper tackles these challenges by sequentially tracking correlation matrices on the Riemannian geometry, where the geodesic distances accurately capture the development of correlations. We propose Rio-CPD, a non-parametric correlation-aware online change point detection framework that combines the Riemannian geometry of the manifold of symmetric positive definite matrices and the cumulative sum statistic (CUSUM) for detecting change points. Rio-CPD enhances CUSUM by computing the geodesic distance from present observations to the Fr\'echet mean of previous observations. With careful choice of metrics equipped to the Riemannian geometry, Rio-CPD is simple and computationally efficient. Experimental results on both synthetic and real-world datasets demonstrate that Rio-CPD outperforms existing methods in detection accuracy and efficiency.
Via

Jun 27, 2024
Abstract:In this report, we present our solutions to the EgoVis Challenges in CVPR 2024, including five tracks in the Ego4D challenge and three tracks in the EPIC-Kitchens challenge. Building upon the video-language two-tower model and leveraging our meticulously organized egocentric video data, we introduce a novel foundation model called EgoVideo. This model is specifically designed to cater to the unique characteristics of egocentric videos and provides strong support for our competition submissions. In the Ego4D challenges, we tackle various tasks including Natural Language Queries, Step Grounding, Moment Queries, Short-term Object Interaction Anticipation, and Long-term Action Anticipation. In addition, we also participate in the EPIC-Kitchens challenge, where we engage in the Action Recognition, Multiple Instance Retrieval, and Domain Adaptation for Action Recognition tracks. By adapting EgoVideo to these diverse tasks, we showcase its versatility and effectiveness in different egocentric video analysis scenarios, demonstrating the powerful representation ability of EgoVideo as an egocentric foundation model. Our codebase and pretrained models are publicly available at https://github.com/OpenGVLab/EgoVideo.
* Champion solutions in the EgoVis CVPR 2024 workshop
Via

May 28, 2024
Abstract:Visual object tracking, which is primarily based on visible light image sequences, encounters numerous challenges in complicated scenarios, such as low light conditions, high dynamic ranges, and background clutter. To address these challenges, incorporating the advantages of multiple visual modalities is a promising solution for achieving reliable object tracking. However, the existing approaches usually integrate multimodal inputs through adaptive local feature interactions, which cannot leverage the full potential of visual cues, thus resulting in insufficient feature modeling. In this study, we propose a novel multimodal hybrid tracker (MMHT) that utilizes frame-event-based data for reliable single object tracking. The MMHT model employs a hybrid backbone consisting of an artificial neural network (ANN) and a spiking neural network (SNN) to extract dominant features from different visual modalities and then uses a unified encoder to align the features across different domains. Moreover, we propose an enhanced transformer-based module to fuse multimodal features using attention mechanisms. With these methods, the MMHT model can effectively construct a multiscale and multidimensional visual feature space and achieve discriminative feature modeling. Extensive experiments demonstrate that the MMHT model exhibits competitive performance in comparison with that of other state-of-the-art methods. Overall, our results highlight the effectiveness of the MMHT model in terms of addressing the challenges faced in visual object tracking tasks.
* 16 pages, 7 figures, 9 tabes; This work has been submitted for
possible publication. Copyright may be transferred without notice, after
which this version may no longer be accessible
Via

May 30, 2024
Abstract:Generalizable perception is one of the pillars of high-level autonomy in space robotics. Estimating the structure and motion of unknown objects in dynamic environments is fundamental for such autonomous systems. Traditionally, the solutions have relied on prior knowledge of target objects, multiple disparate representations, or low-fidelity outputs unsuitable for robotic operations. This work proposes a novel approach to incrementally reconstruct and track a dynamic unknown object using a unified representation -- a set of 3D Gaussian blobs that describe its geometry and appearance. The differentiable 3D Gaussian Splatting framework is adapted to a dynamic object-centric setting. The input to the pipeline is a sequential set of RGB-D images. 3D reconstruction and 6-DoF pose tracking tasks are tackled using first-order gradient-based optimization. The formulation is simple, requires no pre-training, assumes no prior knowledge of the object or its motion, and is suitable for online applications. The proposed approach is validated on a dataset of 10 unknown spacecraft of diverse geometry and texture under arbitrary relative motion. The experiments demonstrate successful 3D reconstruction and accurate 6-DoF tracking of the target object in proximity operations over a short to medium duration. The causes of tracking drift are discussed and potential solutions are outlined.
* Accepted at IEEE International Conference on Space Robotics 2024
Via

Jul 31, 2024
Abstract:Zero-shot dialogue state tracking (DST) seeks to enable dialogue systems to transition to unfamiliar domains without manual annotation or extensive retraining. Prior research has approached this objective by embedding prompts into language models (LMs). Common methodologies include integrating prompts at the input layer or introducing learnable variables at each transformer layer. Nonetheless, each strategy exhibits inherent limitations. Prompts integrated at the input layer risk underutilization, with their impact potentially diminishing across successive transformer layers. Conversely, the addition of learnable variables to each layer can complicate the training process and increase inference latency. To tackle the issues mentioned above, this paper proposes Dual Low-Rank Adaptation (DualLoRA), a plug-and-play architecture designed for zero-shot DST. DualLoRA incorporates two distinct Low-Rank Adaptation (LoRA) components, targeting both dialogue context processing and prompt optimization, to ensure the comprehensive influence of prompts throughout the transformer model layers. This is achieved without incurring additional inference latency, showcasing an efficient integration into existing architectures. Through rigorous evaluation on the MultiWOZ and SGD datasets, DualLoRA demonstrates notable improvements across multiple domains, outperforming traditional baseline methods in zero-shot settings. Our code is accessible at: \url{https://github.com/suntea233/DualLoRA}.
* Accepted by ACL 2024
Via

Jul 18, 2024
Abstract:Although video perception models have made remarkable advancements in recent years, they still heavily rely on explicit text descriptions or pre-defined categories to identify target instances before executing video perception tasks. These models, however, fail to proactively comprehend and reason the user's intentions via textual input. Even though previous works attempt to investigate solutions to incorporate reasoning with image segmentation, they fail to reason with videos due to the video's complexity in object motion. To bridge the gap between image and video, in this work, we propose a new video segmentation task - video reasoning segmentation. The task is designed to output tracklets of segmentation masks given a complex input text query. What's more, to promote research in this unexplored area, we construct a reasoning video segmentation benchmark. Finally, we present ViLLa: Video reasoning segmentation with a Large Language Model, which incorporates the language generation capabilities of multimodal Large Language Models (LLMs) while retaining the capabilities of detecting, segmenting, and tracking multiple instances. We use a temporal-aware context aggregation module to incorporate contextual visual cues to text embeddings and propose a video-frame decoder to build temporal correlations across segmentation tokens. Remarkably, our ViLLa demonstrates capability in handling complex reasoning and referring video segmentation. Also, our model shows impressive ability in different temporal understanding benchmarks. Both quantitative and qualitative experiments show our method effectively unlocks new video reasoning segmentation capabilities for multimodal LLMs. The code and dataset will be available at https://github.com/rkzheng99/ViLLa.
* 16 pages,6 figures
Via

Jun 08, 2024
Abstract:Interactive video object segmentation is a crucial video task, having various applications from video editing to data annotating. However, current approaches struggle to accurately segment objects across diverse domains. Recently, Segment Anything Model (SAM) introduces interactive visual prompts and demonstrates impressive performance across different domains. In this paper, we propose a training-free prompt tracking framework for interactive video object segmentation (I-PT), leveraging the powerful generalization of SAM. Although point tracking efficiently captures the pixel-wise information of objects in a video, points tend to be unstable when tracked over a long period, resulting in incorrect segmentation. Towards fast and robust interaction, we jointly adopt sparse points and boxes tracking, filtering out unstable points and capturing object-wise information. To better integrate reference information from multiple interactions, we introduce a cross-round space-time module (CRSTM), which adaptively aggregates mask features from previous rounds and frames, enhancing the segmentation stability. Our framework has demonstrated robust zero-shot video segmentation results on popular VOS datasets with interaction types, including DAVIS 2017, YouTube-VOS 2018, and MOSE 2023, maintaining a good tradeoff between performance and interaction time.
Via

Jul 25, 2024
Abstract:Occluded Person Re-Identification (ReID) is a metric learning task that involves matching occluded individuals based on their appearance. While many studies have tackled occlusions caused by objects, multi-person occlusions remain less explored. In this work, we identify and address a critical challenge overlooked by previous occluded ReID methods: the Multi-Person Ambiguity (MPA) arising when multiple individuals are visible in the same bounding box, making it impossible to determine the intended ReID target among the candidates. Inspired by recent work on prompting in vision, we introduce Keypoint Promptable ReID (KPR), a novel formulation of the ReID problem that explicitly complements the input bounding box with a set of semantic keypoints indicating the intended target. Since promptable re-identification is an unexplored paradigm, existing ReID datasets lack the pixel-level annotations necessary for prompting. To bridge this gap and foster further research on this topic, we introduce Occluded-PoseTrack ReID, a novel ReID dataset with keypoints labels, that features strong inter-person occlusions. Furthermore, we release custom keypoint labels for four popular ReID benchmarks. Experiments on person retrieval, but also on pose tracking, demonstrate that our method systematically surpasses previous state-of-the-art approaches on various occluded scenarios. Our code, dataset and annotations are available at https://github.com/VlSomers/keypoint_promptable_reidentification.
Via

May 24, 2024
Abstract:Training machine learning models inherently involves a resource-intensive and noisy iterative learning procedure that allows epoch-wise monitoring of the model performance. However, in multi-objective hyperparameter optimization scenarios, the insights gained from the iterative learning procedure typically remain underutilized. We notice that tracking the model performance across multiple epochs under a hyperparameter setting creates a trajectory in the objective space and that trade-offs along the trajectories are often overlooked despite their potential to offer valuable insights to decision-making for model retraining. Therefore, in this study, we propose to enhance the multi-objective hyperparameter optimization problem by having training epochs as an additional decision variable to incorporate trajectory information. Correspondingly, we present a novel trajectory-based multi-objective Bayesian optimization algorithm characterized by two features: 1) an acquisition function that captures the improvement made by the predictive trajectory of any hyperparameter setting and 2) a multi-objective early stopping mechanism that determines when to terminate the trajectory to maximize epoch efficiency. Numerical experiments on diverse synthetic simulations and hyperparameter tuning benchmarks indicate that our algorithm outperforms the state-of-the-art multi-objective optimizers in both locating better trade-offs and tuning efficiency.
Via
