Alert button
Picture for Yifei Huang

Yifei Huang

Alert button

Ego-Exo4D: Understanding Skilled Human Activity from First- and Third-Person Perspectives

Nov 30, 2023
Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, Eugene Byrne, Zach Chavis, Joya Chen, Feng Cheng, Fu-Jen Chu, Sean Crane, Avijit Dasgupta, Jing Dong, Maria Escobar, Cristhian Forigua, Abrham Gebreselasie, Sanjay Haresh, Jing Huang, Md Mohaiminul Islam, Suyog Jain, Rawal Khirodkar, Devansh Kukreja, Kevin J Liang, Jia-Wei Liu, Sagnik Majumder, Yongsen Mao, Miguel Martin, Effrosyni Mavroudi, Tushar Nagarajan, Francesco Ragusa, Santhosh Kumar Ramakrishnan, Luigi Seminara, Arjun Somayazulu, Yale Song, Shan Su, Zihui Xue, Edward Zhang, Jinxu Zhang, Angela Castillo, Changan Chen, Xinzhu Fu, Ryosuke Furuta, Cristina Gonzalez, Prince Gupta, Jiabo Hu, Yifei Huang, Yiming Huang, Weslie Khoo, Anush Kumar, Robert Kuo, Sach Lakhavani, Miao Liu, Mi Luo, Zhengyi Luo, Brighid Meredith, Austin Miller, Oluwatumininu Oguntola, Xiaqing Pan, Penny Peng, Shraman Pramanick, Merey Ramazanova, Fiona Ryan, Wei Shan, Kiran Somasundaram, Chenan Song, Audrey Southerland, Masatoshi Tateno, Huiyu Wang, Yuchen Wang, Takuma Yagi, Mingfei Yan, Xitong Yang, Zecheng Yu, Shengxin Cindy Zha, Chen Zhao, Ziwei Zhao, Zhifan Zhu, Jeff Zhuo, Pablo Arbelaez, Gedas Bertasius, David Crandall, Dima Damen, Jakob Engel, Giovanni Maria Farinella, Antonino Furnari, Bernard Ghanem, Judy Hoffman, C. V. Jawahar, Richard Newcombe, Hyun Soo Park, James M. Rehg, Yoichi Sato, Manolis Savva, Jianbo Shi, Mike Zheng Shou, Michael Wray

We present Ego-Exo4D, a diverse, large-scale multimodal multiview video dataset and benchmark challenge. Ego-Exo4D centers around simultaneously-captured egocentric and exocentric video of skilled human activities (e.g., sports, music, dance, bike repair). More than 800 participants from 13 cities worldwide performed these activities in 131 different natural scene contexts, yielding long-form captures from 1 to 42 minutes each and 1,422 hours of video combined. The multimodal nature of the dataset is unprecedented: the video is accompanied by multichannel audio, eye gaze, 3D point clouds, camera poses, IMU, and multiple paired language descriptions -- including a novel "expert commentary" done by coaches and teachers and tailored to the skilled-activity domain. To push the frontier of first-person video understanding of skilled human activity, we also present a suite of benchmark tasks and their annotations, including fine-grained activity understanding, proficiency estimation, cross-view translation, and 3D hand/body pose. All resources will be open sourced to fuel new research in the community.

Viaarxiv icon

Pretraining Language Models with Text-Attributed Heterogeneous Graphs

Oct 23, 2023
Tao Zou, Le Yu, Yifei Huang, Leilei Sun, Bowen Du

In many real-world scenarios (e.g., academic networks, social platforms), different types of entities are not only associated with texts but also connected by various relationships, which can be abstracted as Text-Attributed Heterogeneous Graphs (TAHGs). Current pretraining tasks for Language Models (LMs) primarily focus on separately learning the textual information of each entity and overlook the crucial aspect of capturing topological connections among entities in TAHGs. In this paper, we present a new pretraining framework for LMs that explicitly considers the topological and heterogeneous information in TAHGs. Firstly, we define a context graph as neighborhoods of a target node within specific orders and propose a topology-aware pretraining task to predict nodes involved in the context graph by jointly optimizing an LM and an auxiliary heterogeneous graph neural network. Secondly, based on the observation that some nodes are text-rich while others have little text, we devise a text augmentation strategy to enrich textless nodes with their neighbors' texts for handling the imbalance issue. We conduct link prediction and node classification tasks on three datasets from various domains. Experimental results demonstrate the superiority of our approach over existing methods and the rationality of each design. Our code is available at https://github.com/Hope-Rita/THLM.

* Accepted by EMNLP 2023 Findings 
Viaarxiv icon

Proposal-based Temporal Action Localization with Point-level Supervision

Oct 09, 2023
Yuan Yin, Yifei Huang, Ryosuke Furuta, Yoichi Sato

Figure 1 for Proposal-based Temporal Action Localization with Point-level Supervision
Figure 2 for Proposal-based Temporal Action Localization with Point-level Supervision
Figure 3 for Proposal-based Temporal Action Localization with Point-level Supervision
Figure 4 for Proposal-based Temporal Action Localization with Point-level Supervision

Point-level supervised temporal action localization (PTAL) aims at recognizing and localizing actions in untrimmed videos where only a single point (frame) within every action instance is annotated in training data. Without temporal annotations, most previous works adopt the multiple instance learning (MIL) framework, where the input video is segmented into non-overlapped short snippets, and action classification is performed independently on every short snippet. We argue that the MIL framework is suboptimal for PTAL because it operates on separated short snippets that contain limited temporal information. Therefore, the classifier only focuses on several easy-to-distinguish snippets instead of discovering the whole action instance without missing any relevant snippets. To alleviate this problem, we propose a novel method that localizes actions by generating and evaluating action proposals of flexible duration that involve more comprehensive temporal information. Moreover, we introduce an efficient clustering algorithm to efficiently generate dense pseudo labels that provide stronger supervision, and a fine-grained contrastive loss to further refine the quality of pseudo labels. Experiments show that our proposed method achieves competitive or superior performance to the state-of-the-art methods and some fully-supervised methods on four benchmarks: ActivityNet 1.3, THUMOS 14, GTEA, and BEOID datasets.

* BMVC 2023 
Viaarxiv icon

Memory-and-Anticipation Transformer for Online Action Understanding

Aug 15, 2023
Jiahao Wang, Guo Chen, Yifei Huang, Limin Wang, Tong Lu

Figure 1 for Memory-and-Anticipation Transformer for Online Action Understanding
Figure 2 for Memory-and-Anticipation Transformer for Online Action Understanding
Figure 3 for Memory-and-Anticipation Transformer for Online Action Understanding
Figure 4 for Memory-and-Anticipation Transformer for Online Action Understanding

Most existing forecasting systems are memory-based methods, which attempt to mimic human forecasting ability by employing various memory mechanisms and have progressed in temporal modeling for memory dependency. Nevertheless, an obvious weakness of this paradigm is that it can only model limited historical dependence and can not transcend the past. In this paper, we rethink the temporal dependence of event evolution and propose a novel memory-anticipation-based paradigm to model an entire temporal structure, including the past, present, and future. Based on this idea, we present Memory-and-Anticipation Transformer (MAT), a memory-anticipation-based approach, to address the online action detection and anticipation tasks. In addition, owing to the inherent superiority of MAT, it can process online action detection and anticipation tasks in a unified manner. The proposed MAT model is tested on four challenging benchmarks TVSeries, THUMOS'14, HDD, and EPIC-Kitchens-100, for online action detection and anticipation tasks, and it significantly outperforms all existing methods. Code is available at https://github.com/Echo0125/Memory-and-Anticipation-Transformer.

* ICCV 2023 Camera Ready 
Viaarxiv icon

VideoLLM: Modeling Video Sequence with Large Language Models

May 23, 2023
Guo Chen, Yin-Dong Zheng, Jiahao Wang, Jilan Xu, Yifei Huang, Junting Pan, Yi Wang, Yali Wang, Yu Qiao, Tong Lu, Limin Wang

Figure 1 for VideoLLM: Modeling Video Sequence with Large Language Models
Figure 2 for VideoLLM: Modeling Video Sequence with Large Language Models
Figure 3 for VideoLLM: Modeling Video Sequence with Large Language Models
Figure 4 for VideoLLM: Modeling Video Sequence with Large Language Models

With the exponential growth of video data, there is an urgent need for automated technology to analyze and comprehend video content. However, existing video understanding models are often task-specific and lack a comprehensive capability of handling diverse tasks. The success of large language models (LLMs) like GPT has demonstrated their impressive abilities in sequence causal reasoning. Building upon this insight, we propose a novel framework called VideoLLM that leverages the sequence reasoning capabilities of pre-trained LLMs from natural language processing (NLP) for video sequence understanding. VideoLLM incorporates a carefully designed Modality Encoder and Semantic Translator, which convert inputs from various modalities into a unified token sequence. This token sequence is then fed into a decoder-only LLM. Subsequently, with the aid of a simple task head, our VideoLLM yields an effective unified framework for different kinds of video understanding tasks. To evaluate the efficacy of VideoLLM, we conduct extensive experiments using multiple LLMs and fine-tuning methods. We evaluate our VideoLLM on eight tasks sourced from four different datasets. The experimental results demonstrate that the understanding and reasoning capabilities of LLMs can be effectively transferred to video understanding tasks. We release the code at https://github.com/cg1177/VideoLLM.

* Technical Report 
Viaarxiv icon

Structural Multiplane Image: Bridging Neural View Synthesis and 3D Reconstruction

Mar 10, 2023
Mingfang Zhang, Jinglu Wang, Xiao Li, Yifei Huang, Yoichi Sato, Yan Lu

Figure 1 for Structural Multiplane Image: Bridging Neural View Synthesis and 3D Reconstruction
Figure 2 for Structural Multiplane Image: Bridging Neural View Synthesis and 3D Reconstruction
Figure 3 for Structural Multiplane Image: Bridging Neural View Synthesis and 3D Reconstruction
Figure 4 for Structural Multiplane Image: Bridging Neural View Synthesis and 3D Reconstruction

The Multiplane Image (MPI), containing a set of fronto-parallel RGBA layers, is an effective and efficient representation for view synthesis from sparse inputs. Yet, its fixed structure limits the performance, especially for surfaces imaged at oblique angles. We introduce the Structural MPI (S-MPI), where the plane structure approximates 3D scenes concisely. Conveying RGBA contexts with geometrically-faithful structures, the S-MPI directly bridges view synthesis and 3D reconstruction. It can not only overcome the critical limitations of MPI, i.e., discretization artifacts from sloped surfaces and abuse of redundant layers, and can also acquire planar 3D reconstruction. Despite the intuition and demand of applying S-MPI, great challenges are introduced, e.g., high-fidelity approximation for both RGBA layers and plane poses, multi-view consistency, non-planar regions modeling, and efficient rendering with intersected planes. Accordingly, we propose a transformer-based network based on a segmentation model. It predicts compact and expressive S-MPI layers with their corresponding masks, poses, and RGBA contexts. Non-planar regions are inclusively handled as a special case in our unified framework. Multi-view consistency is ensured by sharing global proxy embeddings, which encode plane-level features covering the complete 3D scenes with aligned coordinates. Intensive experiments show that our method outperforms both previous state-of-the-art MPI-based view synthesis methods and planar reconstruction methods.

* Accepted to CVPR2023 
Viaarxiv icon

Fine-grained Affordance Annotation for Egocentric Hand-Object Interaction Videos

Feb 10, 2023
Zecheng Yu, Yifei Huang, Ryosuke Furuta, Takuma Yagi, Yusuke Goutsu, Yoichi Sato

Figure 1 for Fine-grained Affordance Annotation for Egocentric Hand-Object Interaction Videos
Figure 2 for Fine-grained Affordance Annotation for Egocentric Hand-Object Interaction Videos
Figure 3 for Fine-grained Affordance Annotation for Egocentric Hand-Object Interaction Videos
Figure 4 for Fine-grained Affordance Annotation for Egocentric Hand-Object Interaction Videos

Object affordance is an important concept in hand-object interaction, providing information on action possibilities based on human motor capacity and objects' physical property thus benefiting tasks such as action anticipation and robot imitation learning. However, the definition of affordance in existing datasets often: 1) mix up affordance with object functionality; 2) confuse affordance with goal-related action; and 3) ignore human motor capacity. This paper proposes an efficient annotation scheme to address these issues by combining goal-irrelevant motor actions and grasp types as affordance labels and introducing the concept of mechanical action to represent the action possibilities between two objects. We provide new annotations by applying this scheme to the EPIC-KITCHENS dataset and test our annotation with tasks such as affordance recognition, hand-object interaction hotspots prediction, and cross-domain evaluation of affordance. The results show that models trained with our annotation can distinguish affordance from other concepts, predict fine-grained interaction possibilities on objects, and generalize through different domains.

* WACV 2023. Refined version of Workshop article arXiv:2206.05424 
Viaarxiv icon

InternVideo-Ego4D: A Pack of Champion Solutions to Ego4D Challenges

Nov 17, 2022
Guo Chen, Sen Xing, Zhe Chen, Yi Wang, Kunchang Li, Yizhuo Li, Yi Liu, Jiahao Wang, Yin-Dong Zheng, Bingkun Huang, Zhiyu Zhao, Junting Pan, Yifei Huang, Zun Wang, Jiashuo Yu, Yinan He, Hongjie Zhang, Tong Lu, Yali Wang, Limin Wang, Yu Qiao

Figure 1 for InternVideo-Ego4D: A Pack of Champion Solutions to Ego4D Challenges
Figure 2 for InternVideo-Ego4D: A Pack of Champion Solutions to Ego4D Challenges
Figure 3 for InternVideo-Ego4D: A Pack of Champion Solutions to Ego4D Challenges
Figure 4 for InternVideo-Ego4D: A Pack of Champion Solutions to Ego4D Challenges

In this report, we present our champion solutions to five tracks at Ego4D challenge. We leverage our developed InternVideo, a video foundation model, for five Ego4D tasks, including Moment Queries, Natural Language Queries, Future Hand Prediction, State Change Object Detection, and Short-term Object Interaction Anticipation. InternVideo-Ego4D is an effective paradigm to adapt the strong foundation model to the downstream ego-centric video understanding tasks with simple head designs. In these five tasks, the performance of InternVideo-Ego4D comprehensively surpasses the baseline methods and the champions of CVPR2022, demonstrating the powerful representation ability of InternVideo as a video foundation model. Our code will be released at https://github.com/OpenGVLab/ego4d-eccv2022-solutions

* Technical report in 2nd International Ego4D Workshop@ECCV 2022. Code will be released at https://github.com/OpenGVLab/ego4d-eccv2022-solutions 
Viaarxiv icon