Text-to-face generation is the process of generating images of faces from textual descriptions using deep learning techniques.
The rapid evolution of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has driven major gains in reasoning, perception, and generation across language and vision, yet whether these advances translate into comparable improvements in safety remains unclear, partly due to fragmented evaluations that focus on isolated modalities or threat models. In this report, we present an integrated safety evaluation of six frontier models--GPT-5.2, Gemini 3 Pro, Qwen3-VL, Grok 4.1 Fast, Nano Banana Pro, and Seedream 4.5--assessing each across language, vision-language, and image generation using a unified protocol that combines benchmark, adversarial, multilingual, and compliance evaluations. By aggregating results into safety leaderboards and model profiles, we reveal a highly uneven safety landscape: while GPT-5.2 demonstrates consistently strong and balanced performance, other models exhibit clear trade-offs across benchmark safety, adversarial robustness, multilingual generalization, and regulatory compliance. Despite strong results under standard benchmarks, all models remain highly vulnerable under adversarial testing, with worst-case safety rates dropping below 6%. Text-to-image models show slightly stronger alignment in regulated visual risk categories, yet remain fragile when faced with adversarial or semantically ambiguous prompts. Overall, these findings highlight that safety in frontier models is inherently multidimensional--shaped by modality, language, and evaluation design--underscoring the need for standardized, holistic safety assessments to better reflect real-world risk and guide responsible deployment.
Real-world License Plate Recognition (LPR) faces significant challenges from severe degradations such as motion blur, low resolution, and complex illumination. The prevailing "restoration-then-recognition" two-stage paradigm suffers from a fundamental flaw: the pixel-level optimization objectives of image restoration models are misaligned with the semantic goals of character recognition, leading to artifact interference and error accumulation. While Vision-Language Models (VLMs) have demonstrated powerful general capabilities, they lack explicit structural modeling for license plate character sequences (e.g., fixed length, specific order). To address this, we propose an end-to-end structure-aware multimodal reasoning framework based on Qwen3-VL. The core innovation lies in the Character-Aware Multimodal Reasoning Module (CMRM), which introduces a set of learnable Character Slot Queries. Through a cross-attention mechanism, these queries actively retrieve fine-grained evidence corresponding to character positions from visual features. Subsequently, we inject these character-aware representations back into the visual tokens via residual modulation, enabling the language model to perform autoregressive generation based on explicit structural priors. Furthermore, combined with the LoRA parameter-efficient fine-tuning strategy, the model achieves domain adaptation while retaining the generalization capabilities of the large model. Extensive experiments on both synthetic and real-world severely degraded datasets demonstrate that our method significantly outperforms existing restoration-recognition combinations and general VLMs, validating the superiority of incorporating structured reasoning into large models for low-quality text recognition tasks.
While Large Language Models (LLMs) can generate fluent text, producing high-quality creative stories remains challenging. Reinforcement Learning (RL) offers a promising solution but faces two critical obstacles: designing reliable reward signals for subjective storytelling quality and mitigating training instability. This paper introduces the Reinforcement Learning for Creative Storytelling (RLCS) framework to systematically address both challenges. First, we develop a Generative Reward Model (GenRM) that provides multi-dimensional analysis and explicit reasoning about story preferences, trained through supervised fine-tuning on demonstrations with reasoning chains distilled from strong teacher models, followed by GRPO-based refinement on expanded preference data. Second, we introduce an entropy-based reward shaping strategy that dynamically prioritizes learning on confident errors and uncertain correct predictions, preventing overfitting on already-mastered patterns. Experiments demonstrate that GenRM achieves 68\% alignment with human creativity judgments, and RLCS significantly outperforms strong baselines including Gemini-2.5-Pro in overall story quality. This work provides a practical pipeline for applying RL to creative domains, effectively navigating the dual challenges of reward modeling and training stability.
A 3D avatar typically has one of six cardinal facial expressions. To simulate realistic emotional variation, we should be able to render a facial transition between two arbitrary expressions. This study presents a new framework for instruction-driven facial expression generation that produces a 3D face and, starting from an image of the face, transforms the facial expression from one designated facial expression to another. The Instruction-driven Facial Expression Decomposer (IFED) module is introduced to facilitate multimodal data learning and capture the correlation between textual descriptions and facial expression features. Subsequently, we propose the Instruction to Facial Expression Transition (I2FET) method, which leverages IFED and a vertex reconstruction loss function to refine the semantic comprehension of latent vectors, thus generating a facial expression sequence according to the given instruction. Lastly, we present the Facial Expression Transition model to generate smooth transitions between facial expressions. Extensive evaluation suggests that the proposed model outperforms state-of-the-art methods on the CK+ and CelebV-HQ datasets. The results show that our framework can generate facial expression trajectories according to text instruction. Considering that text prompts allow us to make diverse descriptions of human emotional states, the repertoire of facial expressions and the transitions between them can be expanded greatly. We expect our framework to find various practical applications More information about our project can be found at https://vohoanganh.github.io/tg3dfet/
Leveraging the vast open-world knowledge and understanding capabilities of Large Language Models (LLMs) to develop general-purpose, semantically-aware recommender systems has emerged as a pivotal research direction in generative recommendation. However, existing methods face bottlenecks in constructing item identifiers. Text-based methods introduce LLMs' vast output space, leading to hallucination, while methods based on Semantic IDs (SIDs) encounter a semantic gap between SIDs and LLMs' native vocabulary, requiring costly vocabulary expansion and alignment training. To address this, this paper introduces Term IDs (TIDs), defined as a set of semantically rich and standardized textual keywords, to serve as robust item identifiers. We propose GRLM, a novel framework centered on TIDs, employs Context-aware Term Generation to convert item's metadata into standardized TIDs and utilizes Integrative Instruction Fine-tuning to collaboratively optimize term internalization and sequential recommendation. Additionally, Elastic Identifier Grounding is designed for robust item mapping. Extensive experiments on real-world datasets demonstrate that GRLM significantly outperforms baselines across multiple scenarios, pointing a promising direction for generalizable and high-performance generative recommendation systems.
Graph-based Retrieval-Augmented Generation (GraphRAG) mitigates hallucinations in Large Language Models (LLMs) by grounding them in structured knowledge. However, current GraphRAG methods are constrained by a prevailing \textit{build-then-reason} paradigm, which relies on a static, pre-constructed Knowledge Graph (KG). This paradigm faces two critical challenges. First, the KG's inherent incompleteness often breaks reasoning paths. Second, the graph's low signal-to-noise ratio introduces distractor facts, presenting query-relevant but misleading knowledge that disrupts the reasoning process. To address these challenges, we argue for a \textit{reason-and-construct} paradigm and propose Relink, a framework that dynamically builds a query-specific evidence graph. To tackle incompleteness, \textbf{Relink} instantiates required facts from a latent relation pool derived from the original text corpus, repairing broken paths on the fly. To handle misleading or distractor facts, Relink employs a unified, query-aware evaluation strategy that jointly considers candidates from both the KG and latent relations, selecting those most useful for answering the query rather than relying on their pre-existence. This empowers Relink to actively discard distractor facts and construct the most faithful and precise evidence path for each query. Extensive experiments on five Open-Domain Question Answering benchmarks show that Relink achieves significant average improvements of 5.4\% in EM and 5.2\% in F1 over leading GraphRAG baselines, demonstrating the superiority of our proposed framework.
Text-to-image (T2I) diffusion models such as SDXL and FLUX have achieved impressive photorealism, yet small-scale distortions remain pervasive in limbs, face, text and so on. Existing refinement approaches either perform costly iterative re-generation or rely on vision-language models (VLMs) with weak spatial grounding, leading to semantic drift and unreliable local edits. To close this gap, we propose Agentic Retoucher, a hierarchical decision-driven framework that reformulates post-generation correction as a human-like perception-reasoning-action loop. Specifically, we design (1) a perception agent that learns contextual saliency for fine-grained distortion localization under text-image consistency cues, (2) a reasoning agent that performs human-aligned inferential diagnosis via progressive preference alignment, and (3) an action agent that adaptively plans localized inpainting guided by user preference. This design integrates perceptual evidence, linguistic reasoning, and controllable correction into a unified, self-corrective decision process. To enable fine-grained supervision and quantitative evaluation, we further construct GenBlemish-27K, a dataset of 6K T2I images with 27K annotated artifact regions across 12 categories. Extensive experiments demonstrate that Agentic Retoucher consistently outperforms state-of-the-art methods in perceptual quality, distortion localization and human preference alignment, establishing a new paradigm for self-corrective and perceptually reliable T2I generation.
Chronic disease management requires regular adherence feedback to prevent avoidable hospitalizations, yet clinicians lack time to produce personalized patient communications. Manual authoring preserves clinical accuracy but does not scale; AI generation scales but can undermine trust in patient-facing contexts. We present a clinician-in-the-loop interface that constrains AI to data organization and preserves physician oversight through recognition-based review. A single-page editor pairs AI-generated section drafts with time-aligned visualizations, enabling inline editing with visual evidence for each claim. This division of labor (AI organizes, clinician decides) targets both efficiency and accountability. In a pilot with three physicians reviewing 24 cases, AI successfully generated clinically personalized drafts matching physicians' manual authoring practice (overall mean 4.86/10 vs. 5.0/10 baseline), requiring minimal physician editing (mean 8.3\% content modification) with zero safety-critical issues, demonstrating effective automation of content generation. However, review time remained comparable to manual practice, revealing an accountability paradox: in high-stakes clinical contexts, professional responsibility requires complete verification regardless of AI accuracy. We contribute three interaction patterns for clinical AI collaboration: bounded generation with recognition-based review via chart-text pairing, automated urgency flagging that analyzes vital trends and adherence patterns with fail-safe escalation for missed critical monitoring tasks, and progressive disclosure controls that reduce cognitive load while maintaining oversight. These patterns indicate that clinical AI efficiency requires not only accurate models, but also mechanisms for selective verification that preserve accountability.
Commercial-grade poster design demands the seamless integration of aesthetic appeal with precise, informative content delivery. Current automated poster generation systems face significant limitations, including incomplete design workflows, poor text rendering accuracy, and insufficient flexibility for commercial applications. To address these challenges, we propose PosterVerse, a full-workflow, commercial-grade poster generation method that seamlessly automates the entire design process while delivering high-density and scalable text rendering. PosterVerse replicates professional design through three key stages: (1) blueprint creation using fine-tuned LLMs to extract key design elements from user requirements, (2) graphical background generation via customized diffusion models to create visually appealing imagery, and (3) unified layout-text rendering with an MLLM-powered HTML engine to guarantee high text accuracy and flexible customization. In addition, we introduce PosterDNA, a commercial-grade, HTML-based dataset tailored for training and validating poster design models. To the best of our knowledge, PosterDNA is the first Chinese poster generation dataset to introduce HTML typography files, enabling scalable text rendering and fundamentally solving the challenges of rendering small and high-density text. Experimental results demonstrate that PosterVerse consistently produces commercial-grade posters with appealing visuals, accurate text alignment, and customizable layouts, making it a promising solution for automating commercial poster design. The code and model are available at https://github.com/wuhaer/PosterVerse.
In the process of digital transformation, enterprises are faced with problems such as insufficient semantic understanding of unstructured data and lack of intelligent decision-making basis in driving mechanisms. This study proposes a method that combines a large language model (LLM) and a knowledge graph. First, a fine-tuned BERT (Bidirectional Encoder Representations from Transformers) model is used to perform entity recognition and relationship extraction on multi-source heterogeneous texts, and GPT-4 is used to generate semantically enhanced vector representations; secondly, a two-layer graph neural network (GNN) architecture is designed to fuse the semantic vectors output by LLM with business metadata to construct a dynamic and scalable enterprise knowledge graph; then reinforcement learning is introduced to optimize decision path generation, and the reward function is used to drive the mechanism iteration. In the case of the manufacturing industry, this mechanism reduced the response time for equipment failure scenarios from 7.8 hours to 3.7 hours, the F1 value reached 94.3%, and the compensation for decision errors in the annual digital transformation cost decreased by 45.3%. This method significantly enhances the intelligence level and execution efficiency of the digital transformation driving mechanism by integrating large model semantic understanding with structured knowledge.