Speech synthesis is the process of generating artificial speech from text using computer algorithms.
Although diffusion-based, non-autoregressive text-to-speech (TTS) systems have demonstrated impressive zero-shot synthesis capabilities, their efficacy is still hindered by two key challenges: the difficulty of text-speech alignment modeling and the high computational overhead of the iterative denoising process. To address these limitations, we propose ARCHI-TTS that features a dedicated semantic aligner to ensure robust temporal and semantic consistency between text and audio. To overcome high computational inference costs, ARCHI-TTS employs an efficient inference strategy that reuses encoder features across denoising steps, drastically accelerating synthesis without performance degradation. An auxiliary CTC loss applied to the condition encoder further enhances the semantic understanding. Experimental results demonstrate that ARCHI-TTS achieves a WER of 1.98% on LibriSpeech-PC test-clean, and 1.47%/1.42% on SeedTTS test-en/test-zh with a high inference efficiency, consistently outperforming recent state-of-the-art TTS systems.
We evaluate two non-autoregressive architectures, StyleTTS2 and F5-TTS, to address the spontaneous nature of in-the-wild speech. Our models utilize flexible duration modeling to improve prosodic naturalness. To handle acoustic noise, we implement a multi-stage enhancement pipeline using the Sidon model, which significantly outperforms standard Demucs in signal quality. Experimental results show that finetuning enhanced audios yields superior robustness, achieving up to 4.21 UTMOS and 3.47 DNSMOS. Furthermore, we analyze the impact of reference prompt quality and length on zero-shot synthesis performance, demonstrating the effectiveness of our approach for realistic speech generation.
Pre-trained models for automatic speech recognition (ASR) and speech enhancement (SE) have exhibited remarkable capabilities under matched noise and channel conditions. However, these models often suffer from severe performance degradation when confronted with domain shifts, particularly in the presence of unseen noise and channel distortions. In view of this, we in this paper present URSA-GAN, a unified and domain-aware generative framework specifically designed to mitigate mismatches in both noise and channel conditions. URSA-GAN leverages a dual-embedding architecture that consists of a noise encoder and a channel encoder, each pre-trained with limited in-domain data to capture domain-relevant representations. These embeddings condition a GAN-based speech generator, facilitating the synthesis of speech that is acoustically aligned with the target domain while preserving phonetic content. To enhance generalization further, we propose dynamic stochastic perturbation, a novel regularization technique that introduces controlled variability into the embeddings during generation, promoting robustness to unseen domains. Empirical results demonstrate that URSA-GAN effectively reduces character error rates in ASR and improves perceptual metrics in SE across diverse noisy and mismatched channel scenarios. Notably, evaluations on compound test conditions with both channel and noise degradations confirm the generalization ability of URSA-GAN, yielding relative improvements of 16.16% in ASR performance and 15.58% in SE metrics.
We introduce and define a novel task-Scene-Aware Visually-Driven Speech Synthesis, aimed at addressing the limitations of existing speech generation models in creating immersive auditory experiences that align with the real physical world. To tackle the two core challenges of data scarcity and modality decoupling, we propose VividVoice, a unified generative framework. First, we constructed a large-scale, high-quality hybrid multimodal dataset, Vivid-210K, which, through an innovative programmatic pipeline, establishes a strong correlation between visual scenes, speaker identity, and audio for the first time. Second, we designed a core alignment module, D-MSVA, which leverages a decoupled memory bank architecture and a cross-modal hybrid supervision strategy to achieve fine-grained alignment from visual scenes to timbre and environmental acoustic features. Both subjective and objective experimental results provide strong evidence that VividVoice significantly outperforms existing baseline models in terms of audio fidelity, content clarity, and multimodal consistency. Our demo is available at https://chengyuann.github.io/VividVoice/.
This work presents EmoAra, an end-to-end emotion-preserving pipeline for cross-lingual spoken communication, motivated by banking customer service where emotional context affects service quality. EmoAra integrates Speech Emotion Recognition, Automatic Speech Recognition, Machine Translation, and Text-to-Speech to process English speech and deliver an Arabic spoken output while retaining emotional nuance. The system uses a CNN-based emotion classifier, Whisper for English transcription, a fine-tuned MarianMT model for English-to-Arabic translation, and MMS-TTS-Ara for Arabic speech synthesis. Experiments report an F1-score of 94% for emotion classification, translation performance of BLEU 56 and BERTScore F1 88.7%, and an average human evaluation score of 81% on banking-domain translations. The implementation and resources are available at the accompanying GitHub repository.
Emotional expression in human speech is nuanced and compositional, often involving multiple, sometimes conflicting, affective cues that may diverge from linguistic content. In contrast, most expressive text-to-speech systems enforce a single utterance-level emotion, collapsing affective diversity and suppressing mixed or text-emotion-misaligned expression. While activation steering via latent direction vectors offers a promising solution, it remains unclear whether emotion representations are linearly steerable in TTS, where steering should be applied within hybrid TTS architectures, and how such complex emotion behaviors should be evaluated. This paper presents the first systematic analysis of activation steering for emotional control in hybrid TTS models, introducing a quantitative, controllable steering framework, and multi-rater evaluation protocols that enable composable mixed-emotion synthesis and reliable text-emotion mismatch synthesis. Our results demonstrate, for the first time, that emotional prosody and expressive variability are primarily synthesized by the TTS language module instead of the flow-matching module, and also provide a lightweight steering approach for generating natural, human-like emotional speech.
Achieving precise and controllable emotional expression is crucial for producing natural and context-appropriate speech in text-to-speech (TTS) synthesis. However, many emotion-aware TTS systems, including large language model (LLM)-based designs, rely on scaling fixed emotion embeddings or external guidance, limiting their ability to model emotion-specific latent characteristics. To address this gap, we present EmoShift, a lightweight activation-steering framework incorporating a EmoSteer layer, which learns a steering vector for each target emotion in the output embedding space to capture its latent offset and maintain stable, appropriate expression across utterances and categories. With only 10M trainable parameters,less than 1/30 of full fine-tuning, EmoShift outperforms zero-shot and fully fine-tuned baselines in objective and subjective evaluations, enhancing emotional expressiveness while preserving naturalness and speaker similarity. Further analysis confirms the proposed EmoSteer layer's effectiveness and reveals its potential for controllable emotional intensity in speech synthesis.
A large number of works view the automatic assessment of speech from an utterance- or system-level perspective. While such approaches are good in judging overall quality, they cannot adequately explain why a certain score was assigned to an utterance. frame-level scores can provide better interpretability, but models predicting them are harder to tune and regularize since no strong targets are available during training. In this work, we show that utterance-level speech quality predictors can be regularized with a segment-based consistency constraint which notably reduces frame-level stochasticity. We then demonstrate two applications involving frame-level scores: The partial spoof scenario and the detection of synthesis artefacts in two state-of-the-art text-to-speech systems. For the latter, we perform listening tests and confirm that listeners rate segments to be of poor quality more often in the set defined by low frame-level scores than in a random control set.
A good language model starts with a good tokenizer. Tokenization is especially important for speech modeling, which must handle continuous signals that mix linguistic and non-linguistic information. A speech tokenizer should extract phonetics and prosody, suppress linguistically irrelevant information like speaker identity, and enable high-quality synthesis. We present Kanade, a single-layer disentangled speech tokenizer that realizes this ideal. Kanade separates out acoustic constants to create a single stream of tokens that captures rich phonetics and prosody. It does so without the need for auxiliary methods that existing disentangled codecs often rely on. Experiments show that Kanade achieves state-of-the-art speaker disentanglement and lexical availability, while maintaining excellent reconstruction quality.
Full-duplex voice interaction is crucial for natural human computer interaction. We present a framework that decomposes complex dialogue into minimal conversational units, enabling the system to process each unit independently and predict when to transit to the next. This framework is instantiated as a semi-cascaded full-duplex dialogue system built around a multimodal large language model, supported by auxiliary modules such as voice activity detection (VAD) and text-to-speech (TTS) synthesis. The resulting system operates in a train-free, plug-and-play manner. Experiments on the HumDial dataset demonstrate the effectiveness of our framework, which ranks second among all teams on the test set of the Human-like Spoken Dialogue Systems Challenge (Track 2: Full-Duplex Interaction). Code is available at the GitHub repository https://github.com/yu-haoyuan/fd-badcat.