School of Electronic Science and Engineering, Nanjing University
Abstract:We present SEvoBench, a modern C++ framework for evolutionary computation (EC), specifically designed to systematically benchmark evolutionary single-objective optimization algorithms. The framework features modular implementations of Particle Swarm Optimization (PSO) and Differential Evolution (DE) algorithms, organized around three core components: (1) algorithm construction with reusable modules, (2) efficient benchmark problem suites, and (3) parallel experimental analysis. Experimental evaluations demonstrate the framework's superior performance in benchmark testing and algorithm comparison. Case studies further validate its capabilities in algorithm hybridization and parameter analysis. Compared to existing frameworks, SEvoBench demonstrates three key advantages: (i) highly efficient and reusable modular implementations of PSO and DE algorithms, (ii) accelerated benchmarking through parallel execution, and (iii) enhanced computational efficiency via SIMD (Single Instruction Multiple Data) vectorization for large-scale problems.
Abstract:Whole-body audio-driven avatar pose and expression generation is a critical task for creating lifelike digital humans and enhancing the capabilities of interactive virtual agents, with wide-ranging applications in virtual reality, digital entertainment, and remote communication. Existing approaches often generate audio-driven facial expressions and gestures independently, which introduces a significant limitation: the lack of seamless coordination between facial and gestural elements, resulting in less natural and cohesive animations. To address this limitation, we propose AsynFusion, a novel framework that leverages diffusion transformers to achieve harmonious expression and gesture synthesis. The proposed method is built upon a dual-branch DiT architecture, which enables the parallel generation of facial expressions and gestures. Within the model, we introduce a Cooperative Synchronization Module to facilitate bidirectional feature interaction between the two modalities, and an Asynchronous LCM Sampling strategy to reduce computational overhead while maintaining high-quality outputs. Extensive experiments demonstrate that AsynFusion achieves state-of-the-art performance in generating real-time, synchronized whole-body animations, consistently outperforming existing methods in both quantitative and qualitative evaluations.
Abstract:Attention-based architectures have achieved superior performance in multivariate time series forecasting but are computationally expensive. Techniques such as patching and adaptive masking have been developed to reduce their sizes and latencies. In this work, we propose a structured pruning method, SPAT ($\textbf{S}$ensitivity $\textbf{P}$runer for $\textbf{At}$tention), which selectively removes redundant attention mechanisms and yields highly effective models. Different from previous approaches, SPAT aims to remove the entire attention module, which reduces the risk of overfitting and enables speed-up without demanding specialized hardware. We propose a dynamic sensitivity metric, $\textbf{S}$ensitivity $\textbf{E}$nhanced $\textbf{N}$ormalized $\textbf{D}$ispersion (SEND) that measures the importance of each attention module during the pre-training phase. Experiments on multivariate datasets demonstrate that SPAT-pruned models achieve reductions of 2.842% in MSE, 1.996% in MAE, and 35.274% in FLOPs. Furthermore, SPAT-pruned models outperform existing lightweight, Mamba-based and LLM-based SOTA methods in both standard and zero-shot inference, highlighting the importance of retaining only the most effective attention mechanisms. We have made our code publicly available https://anonymous.4open.science/r/SPAT-6042.
Abstract:Recently, the superior performance of Transformers has made them a more robust and scalable solution for sequence modeling than traditional recurrent neural networks (RNNs). However, the effectiveness of Transformer in capturing long-term dependencies is primarily attributed to their comprehensive pair-modeling process rather than inherent inductive biases toward sequence semantics. In this study, we explore the capabilities of pure RNNs and reassess their long-term learning mechanisms. Inspired by the physics energy transition models that track energy changes over time, we propose a effective recurrent structure called the``Physics-inspired Energy Transition Neural Network" (PETNN). We demonstrate that PETNN's memory mechanism effectively stores information over long-term dependencies. Experimental results indicate that PETNN outperforms transformer-based methods across various sequence tasks. Furthermore, owing to its recurrent nature, PETNN exhibits significantly lower complexity. Our study presents an optimal foundational recurrent architecture and highlights the potential for developing effective recurrent neural networks in fields currently dominated by Transformer.
Abstract:Annotating instance masks is time-consuming and labor-intensive. A promising solution is to predict contours using a deep learning model and then allow users to refine them. However, most existing methods focus on in-domain scenarios, limiting their effectiveness for cross-domain annotation tasks. In this paper, we propose SiamAnno, a framework inspired by the use of Siamese networks in object tracking. SiamAnno leverages one-shot learning to annotate previously unseen objects by taking a bounding box as input and predicting object boundaries, which can then be adjusted by annotators. Trained on one dataset and tested on another without fine-tuning, SiamAnno achieves state-of-the-art (SOTA) performance across multiple datasets, demonstrating its ability to handle domain and environment shifts in cross-domain tasks. We also provide more comprehensive results compared to previous work, establishing a strong baseline for future research. To our knowledge, SiamAnno is the first model to explore Siamese architecture for instance annotation.
Abstract:Recent advancements in Large Language Models (LLMs) have shown that it is promising to utilize Process Reward Models (PRMs) as verifiers to enhance the performance of LLMs. However, current PRMs face three key challenges: (1) limited process supervision and generalization capabilities, (2) dependence on scalar value prediction without leveraging the generative abilities of LLMs, and (3) inability to scale the test-time compute of PRMs. In this work, we introduce GenPRM, a generative process reward model that performs explicit Chain-of-Thought (CoT) reasoning with code verification before providing judgment for each reasoning step. To obtain high-quality process supervision labels and rationale data, we propose Relative Progress Estimation (RPE) and a rationale synthesis framework that incorporates code verification. Experimental results on ProcessBench and several mathematical reasoning tasks show that GenPRM significantly outperforms prior PRMs with only 23K training data from MATH dataset. Through test-time scaling, a 1.5B GenPRM outperforms GPT-4o, and a 7B GenPRM surpasses Qwen2.5-Math-PRM-72B on ProcessBench. Additionally, GenPRM demonstrates strong abilities to serve as a critic model for policy model refinement. This work establishes a new paradigm for process supervision that bridges the gap between PRMs and critic models in LLMs. Our code, model, and data will be available in https://ryanliu112.github.io/GenPRM.
Abstract:Text-to-motion generation, which translates textual descriptions into human motions, has been challenging in accurately capturing detailed user-imagined motions from simple text inputs. This paper introduces StickMotion, an efficient diffusion-based network designed for multi-condition scenarios, which generates desired motions based on traditional text and our proposed stickman conditions for global and local control of these motions, respectively. We address the challenges introduced by the user-friendly stickman from three perspectives: 1) Data generation. We develop an algorithm to generate hand-drawn stickmen automatically across different dataset formats. 2) Multi-condition fusion. We propose a multi-condition module that integrates into the diffusion process and obtains outputs of all possible condition combinations, reducing computational complexity and enhancing StickMotion's performance compared to conventional approaches with the self-attention module. 3) Dynamic supervision. We empower StickMotion to make minor adjustments to the stickman's position within the output sequences, generating more natural movements through our proposed dynamic supervision strategy. Through quantitative experiments and user studies, sketching stickmen saves users about 51.5% of their time generating motions consistent with their imagination. Our codes, demos, and relevant data will be released to facilitate further research and validation within the scientific community.
Abstract:The rapid development of image generation and editing algorithms in recent years has enabled ordinary user to produce realistic images. However, the current AI painting ecosystem predominantly relies on text-driven diffusion models (T2I), which pose challenges in accurately capturing user requirements. Furthermore, achieving compatibility with other modalities incurs substantial training costs. To this end, we introduce DiffBrush, which is compatible with T2I models and allows users to draw and edit images. By manipulating and adapting the internal representation of the diffusion model, DiffBrush guides the model-generated images to converge towards the user's hand-drawn sketches for user's specific needs without additional training. DiffBrush achieves control over the color, semantic, and instance of objects in images by continuously guiding the latent and instance-level attention map during the denoising process of the diffusion model. Besides, we propose a latent regeneration, which refines the randomly sampled noise in the diffusion model, obtaining a better image generation layout. Finally, users only need to roughly draw the mask of the instance (acceptable colors) on the canvas, DiffBrush can naturally generate the corresponding instance at the corresponding location.
Abstract:With the rapid advancement of game and film production, generating interactive motion from texts has garnered significant attention due to its potential to revolutionize content creation processes. In many practical applications, there is a need to impose strict constraints on the motion range or trajectory of virtual characters. However, existing methods that rely solely on textual input face substantial challenges in accurately capturing the user's intent, particularly in specifying the desired trajectory. As a result, the generated motions often lack plausibility and accuracy. Moreover, existing trajectory - based methods for customized motion generation rely on retraining for single - actor scenarios, which limits flexibility and adaptability to different datasets, as well as interactivity in two-actor motions. To generate interactive motion following specified trajectories, this paper decouples complex motion into a Leader - Follower dynamic, inspired by role allocation in partner dancing. Based on this framework, this paper explores the motion range refinement process in interactive motion generation and proposes a training-free approach, integrating a Pace Controller and a Kinematic Synchronization Adapter. The framework enhances the ability of existing models to generate motion that adheres to trajectory by controlling the leader's movement and correcting the follower's motion to align with the leader. Experimental results show that the proposed approach, by better leveraging trajectory information, outperforms existing methods in both realism and accuracy.
Abstract:Test-Time Scaling (TTS) is an important method for improving the performance of Large Language Models (LLMs) by using additional computation during the inference phase. However, current studies do not systematically analyze how policy models, Process Reward Models (PRMs), and problem difficulty influence TTS. This lack of analysis limits the understanding and practical use of TTS methods. In this paper, we focus on two core questions: (1) What is the optimal approach to scale test-time computation across different policy models, PRMs, and problem difficulty levels? (2) To what extent can extended computation improve the performance of LLMs on complex tasks, and can smaller language models outperform larger ones through this approach? Through comprehensive experiments on MATH-500 and challenging AIME24 tasks, we have the following observations: (1) The compute-optimal TTS strategy is highly dependent on the choice of policy model, PRM, and problem difficulty. (2) With our compute-optimal TTS strategy, extremely small policy models can outperform larger models. For example, a 1B LLM can exceed a 405B LLM on MATH-500. Moreover, on both MATH-500 and AIME24, a 0.5B LLM outperforms GPT-4o, a 3B LLM surpasses a 405B LLM, and a 7B LLM beats o1 and DeepSeek-R1, while with higher inference efficiency. These findings show the significance of adapting TTS strategies to the specific characteristics of each task and model and indicate that TTS is a promising approach for enhancing the reasoning abilities of LLMs.