Abstract:In recent years, Text-to-Audio Generation has achieved remarkable progress, offering sound creators powerful tools to transform textual inspirations into vivid audio. However, existing models predominantly operate directly in the acoustic latent space of a Variational Autoencoder (VAE), often leading to suboptimal alignment between generated audio and textual descriptions. In this paper, we introduce SemanticAudio, a novel framework that conducts both audio generation and editing directly in a high-level semantic space. We define this semantic space as a compact representation capturing the global identity and temporal sequence of sound events, distinct from fine-grained acoustic details. SemanticAudio employs a two-stage Flow Matching architecture: the Semantic Planner first generates these compact semantic features to sketch the global semantic layout, and the Acoustic Synthesizer subsequently produces high-fidelity acoustic latents conditioned on this semantic plan. Leveraging this decoupled design, we further introduce a training-free text-guided editing mechanism that enables precise attribute-level modifications on general audio without retraining. Specifically, this is achieved by steering the semantic generation trajectory via the difference of velocity fields derived from source and target text prompts. Extensive experiments demonstrate that SemanticAudio surpasses existing mainstream approaches in semantic alignment. Demo available at: https://semanticaudio1.github.io/
Abstract:Sequential recommendation models are widely used in applications, yet they face stringent latency requirements. Mainstream models leverage the Transformer attention mechanism to improve performance, but its computational complexity grows with the sequence length, leading to a latency challenge for long sequences. Consequently, KV cache technology has recently been explored in sequential recommendation systems to reduce inference latency. However, KV cache introduces substantial storage overhead in sequential recommendation systems, which often have a large user base with potentially very long user history sequences. In this work, we observe that KV sequences across different users exhibit significant similarities, indicating the existence of collaborative signals in KV. Furthermore, we analyze the KV using singular value decomposition (SVD) and find that the information in KV can be divided into two parts: the majority of the information is shareable across users, while a small portion is user-specific. Motivated by this, we propose CollectiveKV, a cross-user KV sharing mechanism. It captures the information shared across users through a learnable global KV pool. During inference, each user retrieves high-dimensional shared KV from the pool and concatenates them with low-dimensional user-specific KV to obtain the final KV. Experiments on five sequential recommendation models and three datasets show that our method can compress the KV cache to only 0.8% of its original size, while maintaining or even enhancing model performance.
Abstract:User behavior sequences in modern recommendation systems exhibit significant length heterogeneity, ranging from sparse short-term interactions to rich long-term histories. While longer sequences provide more context, we observe that increasing the maximum input sequence length in existing CTR models paradoxically degrades performance for short-sequence users due to attention polarization and length imbalance in training data. To address this, we propose LAIN(Length-Adaptive Interest Network), a plug-and-play framework that explicitly incorporates sequence length as a conditioning signal to balance long- and short-sequence modeling. LAIN consists of three lightweight components: a Spectral Length Encoder that maps length into continuous representations, Length-Conditioned Prompting that injects global contextual cues into both long- and short-term behavior branches, and Length-Modulated Attention that adaptively adjusts attention sharpness based on sequence length. Extensive experiments on three real-world benchmarks across five strong CTR backbones show that LAIN consistently improves overall performance, achieving up to 1.15% AUC gain and 2.25% log loss reduction. Notably, our method significantly improves accuracy for short-sequence users without sacrificing longsequence effectiveness. Our work offers a general, efficient, and deployable solution to mitigate length-induced bias in sequential recommendation.
Abstract:Recent end-to-end autonomous driving approaches have leveraged Vision-Language Models (VLMs) to enhance planning capabilities in complex driving scenarios. However, VLMs are inherently trained as generalist models, lacking specialized understanding of driving-specific reasoning in 3D space and time. When applied to autonomous driving, these models struggle to establish structured spatial-temporal representations that capture geometric relationships, scene context, and motion patterns critical for safe trajectory planning. To address these limitations, we propose SGDrive, a novel framework that explicitly structures the VLM's representation learning around driving-specific knowledge hierarchies. Built upon a pre-trained VLM backbone, SGDrive decomposes driving understanding into a scene-agent-goal hierarchy that mirrors human driving cognition: drivers first perceive the overall environment (scene context), then attend to safety-critical agents and their behaviors, and finally formulate short-term goals before executing actions. This hierarchical decomposition provides the structured spatial-temporal representation that generalist VLMs lack, integrating multi-level information into a compact yet comprehensive format for trajectory planning. Extensive experiments on the NAVSIM benchmark demonstrate that SGDrive achieves state-of-the-art performance among camera-only methods on both PDMS and EPDMS, validating the effectiveness of hierarchical knowledge structuring for adapting generalist VLMs to autonomous driving.
Abstract:Semi-supervised 3D object detection, aiming to explore unlabeled data for boosting 3D object detectors, has emerged as an active research area in recent years. Some previous methods have shown substantial improvements by either employing heterogeneous teacher models to provide high-quality pseudo labels or enforcing feature-perspective consistency between the teacher and student networks. However, these methods overlook the fact that the model usually tends to exhibit low sensitivity to object geometries with limited labeled data, making it difficult to capture geometric information, which is crucial for enhancing the student model's ability in object perception and localization. In this paper, we propose GeoTeacher to enhance the student model's ability to capture geometric relations of objects with limited training data, especially unlabeled data. We design a keypoint-based geometric relation supervision module that transfers the teacher model's knowledge of object geometry to the student, thereby improving the student's capability in understanding geometric relations. Furthermore, we introduce a voxel-wise data augmentation strategy that increases the diversity of object geometries, thereby further improving the student model's ability to comprehend geometric structures. To preserve the integrity of distant objects during augmentation, we incorporate a distance-decay mechanism into this strategy. Moreover, GeoTeacher can be combined with different SS3D methods to further improve their performance. Extensive experiments on the ONCE and Waymo datasets indicate the effectiveness and generalization of our method and we achieve the new state-of-the-art results. Code will be available at https://github.com/SII-Whaleice/GeoTeacher
Abstract:Audio codecs are a critical component of modern speech generation systems. This paper introduces a low-bitrate, multi-scale residual codec that encodes speech into four distinct streams: semantic, timbre, prosody, and residual. This architecture achieves high-fidelity speech reconstruction at competitive low bitrates while demonstrating an inherent ability for information disentanglement. We construct a two-stage language model for text-to-speech (TTS) synthesis using this codec, which, despite its lightweight design and minimal data requirements, achieves a state-of-the-art Word Error Rate (WER) and superior speaker similarity compared to several larger models. Furthermore, the codec's design proves highly effective for voice conversion, enabling independent manipulation of speaker timbre and prosody.
Abstract:With the development of speech large language models (speech LLMs), users can now interact directly with assistants via speech. However, most existing models simply convert the response content into speech without fully understanding the rich emotional and paralinguistic cues embedded in the user's query. In many cases, the same sentence can have different meanings depending on the emotional expression. Furthermore, emotional understanding is essential for improving user experience in human-machine interaction. Currently, most speech LLMs with empathetic capabilities are trained on massive datasets. This approach requires vast amounts of data and significant computational resources. Therefore, a key challenge lies in how to develop a speech LLM capable of generating empathetic responses with limited data and without the need for large-scale training. To address this challenge, we propose Emotion Omni, a novel model architecture designed to understand the emotional content of user speech input and generate empathetic speech responses. Additionally, we developed a data generation pipeline based on an open-source TTS framework to construct a 200k emotional dialogue dataset, which supports the construction of an empathetic speech assistant. The demos are available at https://w311411.github.io/omni_demo/
Abstract:Accurate classification of sleep stages based on bio-signals is fundamental for automatic sleep stage annotation. Traditionally, this task relies on experienced clinicians to manually annotate data, a process that is both time-consuming and labor-intensive. In recent years, deep learning methods have shown promise in automating this task. However, three major challenges remain: (1) deep learning models typically require large-scale labeled datasets, making them less effective in real-world settings where annotated data is limited; (2) significant inter-individual variability in bio-signals often results in inconsistent model performance when applied to new subjects, limiting generalization; and (3) existing approaches often overlook the high-order relationships among bio-signals, failing to simultaneously capture signal heterogeneity and spatial-temporal dependencies. To address these issues, we propose MetaSTH-Sleep, a few-shot sleep stage classification framework based on spatial-temporal hypergraph enhanced meta-learning. Our approach enables rapid adaptation to new subjects using only a few labeled samples, while the hypergraph structure effectively models complex spatial interconnections and temporal dynamics simultaneously in EEG signals. Experimental results demonstrate that MetaSTH-Sleep achieves substantial performance improvements across diverse subjects, offering valuable insights to support clinicians in sleep stage annotation.
Abstract:Driving simulation plays a crucial role in developing reliable driving agents by providing controlled, evaluative environments. To enable meaningful assessments, a high-quality driving simulator must satisfy several key requirements: multi-modal sensing capabilities (e.g., camera and LiDAR) with realistic scene rendering to minimize observational discrepancies; closed-loop evaluation to support free-form trajectory behaviors; highly diverse traffic scenarios for thorough evaluation; multi-agent cooperation to capture interaction dynamics; and high computational efficiency to ensure affordability and scalability. However, existing simulators and benchmarks fail to comprehensively meet these fundamental criteria. To bridge this gap, this paper introduces RealEngine, a novel driving simulation framework that holistically integrates 3D scene reconstruction and novel view synthesis techniques to achieve realistic and flexible closed-loop simulation in the driving context. By leveraging real-world multi-modal sensor data, RealEngine reconstructs background scenes and foreground traffic participants separately, allowing for highly diverse and realistic traffic scenarios through flexible scene composition. This synergistic fusion of scene reconstruction and view synthesis enables photorealistic rendering across multiple sensor modalities, ensuring both perceptual fidelity and geometric accuracy. Building upon this environment, RealEngine supports three essential driving simulation categories: non-reactive simulation, safety testing, and multi-agent interaction, collectively forming a reliable and comprehensive benchmark for evaluating the real-world performance of driving agents.




Abstract:With the rapid growth of multi-modal data from social media, short video platforms, and e-commerce, content-based retrieval has become essential for efficiently searching and utilizing heterogeneous information. Over time, retrieval techniques have evolved from Unimodal Retrieval (UR) to Cross-modal Retrieval (CR) and, more recently, to Composed Multi-modal Retrieval (CMR). CMR enables users to retrieve images or videos by integrating a reference visual input with textual modifications, enhancing search flexibility and precision. This paper provides a comprehensive review of CMR, covering its fundamental challenges, technical advancements, and categorization into supervised, zero-shot, and semi-supervised learning paradigms. We discuss key research directions, including data augmentation, model architecture, and loss optimization in supervised CMR, as well as transformation frameworks and external knowledge integration in zero-shot CMR. Additionally, we highlight the application potential of CMR in composed image retrieval, video retrieval, and person retrieval, which have significant implications for e-commerce, online search, and public security. Given its ability to refine and personalize search experiences, CMR is poised to become a pivotal technology in next-generation retrieval systems. A curated list of related works and resources is available at: https://github.com/kkzhang95/Awesome-Composed-Multi-modal-Retrieval