Abstract:Code completion technology based on large language model has significantly improved the development efficiency of programmers. However, in practical applications, there remains a gap between current commonly used code completion evaluation metrics and users' actual perception. To address this issue, we propose two evaluation metrics for code completion tasks--LCP and ROUGE-LCP, from the perspective of probabilistic modeling. Furthermore, to tackle the lack of effective structural semantic modeling and cross-module dependency information in LLMs for repository-level code completion scenarios, we propose a data processing method based on a Structure-Preserving and Semantically-Reordered Code Graph (SPSR-Graph). Through theoretical analysis and experimental validation, we demonstrate the superiority of the proposed evaluation metrics in terms of user perception consistency, as well as the effectiveness of the data processing method in enhancing model performance.
Abstract:This study investigates whether the phonological features derived from the Featurally Underspecified Lexicon model can be applied in text-to-speech systems to generate native and non-native speech in English and Mandarin. We present a mapping of ARPABET/pinyin to SAMPA/SAMPA-SC and then to phonological features. This mapping was tested for whether it could lead to the successful generation of native, non-native, and code-switched speech in the two languages. We ran two experiments, one with a small dataset and one with a larger dataset. The results supported that phonological features could be used as a feasible input system for languages in or not in the train data, although further investigation is needed to improve model performance. The results lend support to FUL by presenting successfully synthesised output, and by having the output carrying a source-language accent when synthesising a language not in the training data. The TTS process stimulated human second language acquisition process and thus also confirm FUL's ability to account for acquisition.
Abstract:This study investigates whether phonological features can be applied in text-to-speech systems to generate native and non-native speech in English and Mandarin. We present a mapping of ARPABET/pinyin to SAMPA/SAMPA-SC and then to phonological features. We tested whether this mapping could lead to the successful generation of native, non-native, and code-switched speech in the two languages. We ran two experiments, one with a small dataset and one with a larger dataset. The results proved that phonological features could be used as a feasible input system, although further investigation is needed to improve model performance. The accented output generated by the TTS models also helps with understanding human second language acquisition processes.