May 26, 2025
Abstract:Large language models (LLMs) have demonstrated impressive capabilities in a wide range of downstream natural language processing tasks. Nevertheless, their considerable sizes and memory demands hinder practical deployment, underscoring the importance of developing efficient compression strategies. Singular value decomposition (SVD) decomposes a matrix into orthogonal components, enabling efficient low-rank approximation. This is particularly suitable for LLM compression, where weight matrices often exhibit significant redundancy. However, current SVD-based methods neglect the residual matrix from truncation, resulting in significant truncation loss. Additionally, compressing all layers of the model results in severe performance degradation. To overcome these limitations, we propose ResSVD, a new post-training SVD-based LLM compression method. Specifically, we leverage the residual matrix generated during the truncation process to reduce truncation loss. Moreover, under a fixed overall compression ratio, we selectively compress the last few layers of the model, which mitigates error propagation and significantly improves the performance of compressed models.Comprehensive evaluations of ResSVD on diverse LLM families and multiple benchmark datasets indicate that ResSVD consistently achieves superior performance over existing counterpart methods, demonstrating its practical effectiveness.
Via
