Large language models rely on kv-caches to avoid redundant computation during autoregressive decoding, but as context length grows, reading and writing the cache can quickly saturate GPU memory bandwidth. Recent work has explored KV-cache compression, yet most approaches neglect the data-dependent nature of kv-caches and their variation across layers. We introduce KV-CoRE KV-cache Compressibility by Rank Evaluation), an SVD-based method for quantifying the data-dependent low-rank compressibility of kv-caches. KV-CoRE computes the optimal low-rank approximation under the Frobenius norm and, being gradient-free and incremental, enables efficient dataset-level, layer-wise evaluation. Using this method, we analyze multiple models and datasets spanning five English domains and sixteen languages, uncovering systematic patterns that link compressibility to model architecture, training data, and language coverage. As part of this analysis, we employ the Normalized Effective Rank as a metric of compressibility and show that it correlates strongly with performance degradation under compression. Our study establishes a principled evaluation framework and the first large-scale benchmark of kv-cache compressibility in LLMs, offering insights for dynamic, data-aware compression and data-centric model development.
Parameter-Efficient Fine-Tuning (PEFT) has emerged as a practical paradigm for adapting large language models (LLMs) without updating all parameters. Most existing approaches, such as LoRA and PiSSA, rely on low-rank decompositions of weight updates. However, the low-rank assumption may restrict expressivity, particularly in task-specific adaptation scenarios where singular values are distributed relatively uniformly. To address this limitation, we propose CoSA (Compressed Sensing-Based Adaptation), a new PEFT method extended from compressed sensing theory. Instead of constraining weight updates to a low-rank subspace, CoSA expresses them through fixed random projection matrices and a compact learnable core. We provide a formal theoretical analysis of CoSA as a synthesis process, proving that weight updates can be compactly encoded into a low-dimensional space and mapped back through random projections. Extensive experimental results show that CoSA provides a principled perspective for efficient and expressive multi-scale model adaptation. Specifically, we evaluate CoSA on 10 diverse tasks, including natural language understanding and generation, employing 5 models of different scales from RoBERTa, Llama, and Qwen families. Across these settings, CoSA consistently matches or outperforms state-of-the-art PEFT methods.
The rapid growth in the parameter scale of large language models (LLMs) has created a high demand for efficient compression techniques. As a hardware-agnostic and highly compatible technique, low-rank compression has been widely adopted. However, existing methods typically compress each layer independently by minimizing per-layer reconstruction error, overlooking a critical limitation: the reconstruction error propagates and accumulates through the network, which leads to amplified global deviations from the full-precision baseline. To address this, we propose Self-Adaptive Error Suppression SVD (SAES-SVD), a LLMs compression framework that jointly optimizes intra-layer reconstruction and inter-layer error compensation. SAES-SVD is composed of two novel components: (1) Cumulative Error-Aware Layer Compression (CEALC), which formulates the compression objective as a combination of local reconstruction and weighted cumulative error compensation. Based on it, we derive a closed-form low-rank solution relied on second-order activation statistics, which explicitly aligns each layer's output with its full-precision counterpart to compensate for accumulated errors. (2) Adaptive Collaborative Error Suppression (ACES), which automatically adjusts the weighting coefficient to enhance the low-rank structure of the compression objective in CEALC. Specifically, the coefficient is optimized to maximize the ratio between the Frobenius norm of the compressed layer's output and that of the compression objective under a fixed rank, thus ensuring that the rank budget is utilized effectively. Extensive experiments across multiple LLM architectures and tasks show that, without fine-tuning or mixed-rank strategies, SAES-SVD consistently improves post-compression performance.
Advances in large language models have driven strong performance across many tasks, but their memory and compute costs still hinder deployment. SVD-based compression reduces storage and can speed up inference via low-rank factors, yet performance depends on how rank is allocated under a global compression ratio. Prior methods often use homogeneous ranks for similarly sized matrices, despite large differences in loss sensitivity, or rely on expensive iterative pre-truncation optimization to determine per matrix ranks. We propose \textbf{Zero Sum SVD} (\textbf{ZS-SVD}), a post-training method that performs \emph{global} singular component selection using activation whitening and first-order calibration loss estimates in whitened coordinates. \textbf{ZS-SVD} prunes components across the whole model with a \textbf{zero sum} rule that keeps the cumulative predicted loss change near zero, automatically yielding heterogeneous ranks without solving a rank allocation optimization. Motivated by evidence that gradients near pretrained solutions exhibit low rank structure, we also introduce an optional lightweight correction that applies a \textbf{single} projected gradient update after truncation, followed by re-truncation. Extensive experiments across multiple LLM architectures show consistent gains across diverse benchmarks and compression ratios. Code is available at https://github.com/mint-vu/Zero-Sum-SVD
Large language models are limited in deployment by GPU memory and inference latency. We present Minima, a production compression pipeline that learns where and how to structurally compress a Transformer and turns that compression into real serving gains. Minima trains a lightweight convolutional predictor to estimate layer- and patch-level sensitivity, applies a mixture of Tucker, tensor-train, and tensor-ring decompositions to low-sensitivity regions, performs a short healing fine-tune, and executes the resulting operators with custom Triton and CUDA kernels. The reduced memory footprint enables speculative decoding with a small draft model and a larger verifier. On Qwen3-32B at an 8k-token context window, Minima reduces peak VRAM from 64 GiB to 40 GiB. For a single active request, throughput increases from 40 tokens per second (baseline) to 50 tokens per second (Minima) and 75 tokens per second (Minima with speculative decoding). Under 50 parallel requests, throughput is 34, 44, and 53 tokens per second respectively, showing that Minima remains effective under high concurrency even when speculative decoding gains compress. We position Minima relative to recent tensor-network, low-rank plus quantization, and cross-layer sharing methods, and argue that it is a practical step toward more aggressive structural compression via shared tensor backbones with tiny per-layer adapters.
Long-context inference in large language models is increasingly bottlenecked by the memory and compute cost of the KV-Cache. Low-rank factorization compresses KV projections by writing $W \approx A * B$, where A produces latent KV states and B can be absorbed into downstream weights. In modern RoPE-based LLMs, this absorption fails: RoPE forces latent KV states to be reconstructed to full dimension, reintroducing substantial memory and compute overhead. We propose RoPE-Aligned Pruning (RAP), which prunes entire RoPE-aligned column pairs to preserve RoPE's 2x2 rotation structure, restore B absorption, and eliminate reconstruction. Our evaluation on LLaMA-3-8B and Mistral-7B shows that RAP enables joint reduction of KV-Cache, attention parameters, and FLOPs by 20-30%, all at once, while maintaining strong accuracy. Notably, RAP reduces attention latency to 83% (prefill) and 77% (decode) of baseline.
Deep neural networks (DNNs) have become indispensable in many real-life applications like natural language processing, and autonomous systems. However, deploying DNNs on resource-constrained devices, e.g., in RISC-V platforms, remains challenging due to the high computational and memory demands of fully connected (FC) layers, which dominate resource consumption. Low-rank factorization (LRF) offers an effective approach to compressing FC layers, but the vast design space of LRF solutions involves complex trade-offs among FLOPs, memory size, inference time, and accuracy, making the LRF process complex and time-consuming. This paper introduces an end-to-end LRF design space exploration methodology and a specialized design tool for optimizing FC layers on RISC-V processors. Using Tensor Train Decomposition (TTD) offered by TensorFlow T3F library, the proposed work prunes the LRF design space by excluding first, inefficient decomposition shapes and second, solutions with poor inference performance on RISC-V architectures. Compiler optimizations are then applied to enhance custom T3F layer performance, minimizing inference time and boosting computational efficiency. On average, our TT-decomposed layers run 3x faster than IREE and 8x faster than Pluto on the same compressed model. This work provides an efficient solution for deploying DNNs on edge and embedded devices powered by RISC-V architectures.
The expanding scale of neural networks poses a major challenge for distributed machine learning, particularly under limited communication resources. While split learning (SL) alleviates client computational burden by distributing model layers between clients and server, it incurs substantial communication overhead from frequent transmission of intermediate activations and gradients. To tackle this issue, we propose NSC-SL, a bandwidth-aware adaptive compression algorithm for communication-efficient SL. NSC-SL first dynamically determines the optimal rank of low-rank approximation based on the singular value distribution for adapting real-time bandwidth constraints. Then, NSC-SL performs error-compensated tensor factorization using alternating orthogonal iteration with residual feedback, effectively minimizing truncation loss. The collaborative mechanisms enable NSC-SL to achieve high compression ratios while preserving semantic-rich information essential for convergence. Extensive experiments demonstrate the superb performance of NSC-SL.
Current embodied VLM evaluation relies on static, expert-defined, manually annotated benchmarks that exhibit severe redundancy and coverage imbalance. This labor intensive paradigm drains computational and annotation resources, inflates costs, and distorts model rankings, ultimately stifling iterative development. To address this, we propose Agentic Automatic Evaluation (A2Eval), the first agentic framework that automates benchmark curation and evaluation through two collaborative agents. The Data Agent autonomously induces capability dimensions and assembles a balanced, compact evaluation suite, while the Eval Agent synthesizes and validates executable evaluation pipelines, enabling fully autonomous, high-fidelity assessment. Evaluated across 10 benchmarks and 13 models, A2Eval compresses evaluation suites by 85%, reduces overall computational costs by 77%, and delivers a 4.6x speedup while preserving evaluation quality. Crucially, A2Eval corrects systematic ranking biases, improves human alignment to Spearman's rho=0.85, and maintains high ranking fidelity (Kendall's tau=0.81), establishing a new standard for high-fidelity, low-cost embodied assessment. Our code and data will be public soon.
Linear Attention Large Language Models (LLMs) offer a compelling recurrent formulation that compresses context into a fixed-size state matrix, enabling constant-time inference. However, the internal dynamics of this compressed state remain largely opaque. In this work, we present a comprehensive study on the runtime state dynamics of state-of-the-art Linear Attention models. We uncover a fundamental phenomenon termed State Rank Stratification, characterized by a distinct spectral bifurcation among linear attention heads: while one group maintains an effective rank oscillating near zero, the other exhibits rapid growth that converges to an upper bound. Extensive experiments across diverse inference contexts reveal that these dynamics remain strikingly consistent, indicating that the identity of a head,whether low-rank or high-rank,is an intrinsic structural property acquired during pre-training, rather than a transient state dependent on the input data. Furthermore, our diagnostic probes reveal a surprising functional divergence: low-rank heads are indispensable for model reasoning, whereas high-rank heads exhibit significant redundancy. Leveraging this insight, we propose Joint Rank-Norm Pruning, a zero-shot strategy that achieves a 38.9\% reduction in KV-cache overhead while largely maintaining model accuracy.