Abstract:Low-rank adaptation (LoRA) has been developed as an efficient approach for adapting large language models (LLMs) by fine-tuning two low-rank matrices, thereby reducing the number of trainable parameters. However, prior research indicates that many of the weights in these matrices are redundant, leading to inefficiencies in parameter utilization. To address this limitation, we introduce Dense Low-Rank Adaptation (DenseLoRA), a novel approach that enhances parameter efficiency while achieving superior performance compared to LoRA. DenseLoRA builds upon the concept of representation fine-tuning, incorporating a single Encoder-Decoder to refine and compress hidden representations across all adaptation layers before applying adaptation. Instead of relying on two redundant low-rank matrices as in LoRA, DenseLoRA adapts LLMs through a dense low-rank matrix, improving parameter utilization and adaptation efficiency. We evaluate DenseLoRA on various benchmarks, showing that it achieves 83.8% accuracy with only 0.01% of trainable parameters, compared to LoRA's 80.8% accuracy with 0.70% of trainable parameters on LLaMA3-8B. Additionally, we conduct extensive experiments to systematically assess the impact of DenseLoRA's components on overall model performance. Code is available at https://github.com/mulin-ahu/DenseLoRA.
Abstract:The "pre-train, prompt" paradigm is widely adopted in various graph-based tasks and has shown promising performance in community detection. Most existing semi-supervised community detection algorithms detect communities based on known ones, and the detected communities typically do not contain the given query node. Therefore, they are not suitable for searching the community of a given node. Motivated by this, we adopt this paradigm into the semi-supervised community search for the first time and propose Pre-trained Prompt-driven Community Search (PPCS), a novel model designed to enhance search accuracy and efficiency. PPCS consists of three main components: node encoding, sample generation, and prompt-driven fine-tuning. Specifically, the node encoding component employs graph neural networks to learn local structural patterns of nodes in a graph, thereby obtaining representations for nodes and communities. Next, the sample generation component identifies an initial community for a given node and selects known communities that are structurally similar to the initial one as training samples. Finally, the prompt-driven fine-tuning component leverages these samples as prompts to guide the final community prediction. Experimental results on five real-world datasets demonstrate that PPCS performs better than baseline algorithms. It also achieves higher community search efficiency than semi-supervised community search baseline methods, with ablation studies verifying the effectiveness of each component of PPCS.
Abstract:Real-world networks often involve both keywords and locations, along with travel time variations between locations due to traffic conditions. However, most existing cohesive subgraph-based community search studies utilize a single attribute, either keywords or locations, to identify communities. They do not simultaneously consider both keywords and locations, which results in low semantic or spatial cohesiveness of the detected communities, and they fail to account for variations in travel time. Additionally, these studies traverse the entire network to build efficient indexes, but the detected community only involves nodes around the query node, leading to the traversal of nodes that are not relevant to the community. Therefore, we propose the problem of discovering semantic-spatial aware k-core, which refers to a k-core with high semantic and time-dependent spatial cohesiveness containing the query node. To address this problem, we propose an exact and a greedy algorithm, both of which gradually expand outward from the query node. They are local methods that only access the local part of the attributed network near the query node rather than the entire network. Moreover, we design a method to calculate the semantic similarity between two keywords using large language models. This method alleviates the disadvantages of keyword-matching methods used in existing community search studies, such as mismatches caused by differently expressed synonyms and the presence of irrelevant words. Experimental results show that the greedy algorithm outperforms baselines in terms of structural, semantic, and time-dependent spatial cohesiveness.
Abstract:Hypergraphs, capable of representing high-order interactions via hyperedges, have become a powerful tool for modeling real-world biological and social systems. Inherent relationships within these real-world systems, such as the encoding relationship between genes and their protein products, drive the establishment of interconnections between multiple hypergraphs. Here, we demonstrate how to utilize those interconnections between multiple hypergraphs to synthesize integrated information from multiple higher-order systems, thereby enhancing understanding of underlying structures. We propose a model based on the stochastic block model, which integrates information from multiple hypergraphs to reveal latent high-order structures. Real-world hyperedges exhibit preferential attachment, where certain nodes dominate hyperedge formation. To characterize this phenomenon, our model introduces hyperedge internal degree to quantify nodes' contributions to hyperedge formation. This model is capable of mining communities, predicting missing hyperedges of arbitrary sizes within hypergraphs, and inferring inter-hypergraph edges between hypergraphs. We apply our model to high-order datasets to evaluate its performance. Experimental results demonstrate strong performance of our model in community detection, hyperedge prediction, and inter-hypergraph edge prediction tasks. Moreover, we show that our model enables analysis of multiple hypergraphs of different types and supports the analysis of a single hypergraph in the absence of inter-hypergraph edges. Our work provides a practical and flexible tool for analyzing multiple hypergraphs, greatly advancing the understanding of the organization in real-world high-order systems.
Abstract:Being able to successfully determine whether the testing samples has similar distribution as the training samples is a fundamental question to address before we can safely deploy most of the machine learning models into practice. In this paper, we propose TOOD detection, a simple yet effective tree-based out-of-distribution (TOOD) detection mechanism to determine if a set of unseen samples will have similar distribution as of the training samples. The TOOD detection mechanism is based on computing pairwise hamming distance of testing samples' tree embeddings, which are obtained by fitting a tree-based ensemble model through in-distribution training samples. Our approach is interpretable and robust for its tree-based nature. Furthermore, our approach is efficient, flexible to various machine learning tasks, and can be easily generalized to unsupervised setting. Extensive experiments are conducted to show the proposed method outperforms other state-of-the-art out-of-distribution detection methods in distinguishing the in-distribution from out-of-distribution on various tabular, image, and text data.