Abstract:Tensorizing a neural network involves reshaping some or all of its dense weight matrices into higher-order tensors and approximating them using low-rank tensor network decompositions. This technique has shown promise as a model compression strategy for large-scale neural networks. However, despite encouraging empirical results, tensorized neural networks (TNNs) remain underutilized in mainstream deep learning. In this position paper, we offer a perspective on both the potential and current limitations of TNNs. We argue that TNNs represent a powerful yet underexplored framework for deep learning--one that deserves greater attention from both engineering and theoretical communities. Beyond compression, we highlight the value of TNNs as a flexible class of architectures with distinctive scaling properties and increased interpretability. A central feature of TNNs is the presence of bond indices, which introduce new latent spaces not found in conventional networks. These internal representations may provide deeper insight into the evolution of features across layers, potentially advancing the goals of mechanistic interpretability. We conclude by outlining several key research directions aimed at overcoming the practical barriers to scaling and adopting TNNs in modern deep learning workflows.
Abstract:Making accurate predictions of chaotic time series is a complex challenge. Reservoir computing, a neuromorphic-inspired approach, has emerged as a powerful tool for this task. It exploits the memory and nonlinearity of dynamical systems without requiring extensive parameter tuning. However, selecting and optimizing reservoir architectures remains an open problem. Next-generation reservoir computing simplifies this problem by employing nonlinear vector autoregression based on truncated Volterra series, thereby reducing hyperparameter complexity. Nevertheless, the latter suffers from exponential parameter growth in terms of the maximum monomial degree. Tensor networks offer a promising solution to this issue by decomposing multidimensional arrays into low-dimensional structures, thus mitigating the curse of dimensionality. This paper explores the application of a previously proposed tensor network model for predicting chaotic time series, demonstrating its advantages in terms of accuracy and computational efficiency compared to conventional echo state networks. Using a state-of-the-art tensor network approach enables us to bridge the gap between the tensor network and reservoir computing communities, fostering advances in both fields.
Abstract:The growing complexity of radar signals demands responsive and accurate detection systems that can operate efficiently on resource-constrained edge devices. Existing models, while effective, often rely on substantial computational resources and large datasets, making them impractical for edge deployment. In this work, we propose an ultralight hybrid neural network optimized for edge applications, delivering robust performance across unfavorable signal-to-noise ratios (mean accuracy of 96.3% at 0 dB) using less than 100 samples per class, and significantly reducing computational overhead.
Abstract:Variational quantum algorithms are gaining attention as an early application of Noisy Intermediate-Scale Quantum (NISQ) devices. One of the main problems of variational methods lies in the phenomenon of Barren Plateaus, present in the optimization of variational parameters. Adding geometric inductive bias to the quantum models has been proposed as a potential solution to mitigate this problem, leading to a new field called Geometric Quantum Machine Learning. In this work, an equivariant architecture for variational quantum classifiers is introduced to create a label-invariant model for image classification with $C_4$ rotational label symmetry. The equivariant circuit is benchmarked against two different architectures, and it is experimentally observed that the geometric approach boosts the model's performance. Finally, a classical equivariant convolution operation is proposed to extend the quantum model for the processing of larger images, employing the resources available in NISQ devices.