Abstract:Cryptocurrency price dynamics are driven largely by microstructural supply demand imbalances in the limit order book (LOB), yet the highly noisy nature of LOB data complicates the signal extraction process. Prior research has demonstrated that deep-learning architectures can yield promising predictive performance on pre-processed equity and futures LOB data, but they often treat model complexity as an unqualified virtue. In this paper, we aim to examine whether adding extra hidden layers or parameters to "blackbox ish" neural networks genuinely enhances short term price forecasting, or if gains are primarily attributable to data preprocessing and feature engineering. We benchmark a spectrum of models from interpretable baselines, logistic regression, XGBoost to deep architectures (DeepLOB, Conv1D+LSTM) on BTC/USDT LOB snapshots sampled at 100 ms to multi second intervals using publicly available Bybit data. We introduce two data filtering pipelines (Kalman, Savitzky Golay) and evaluate both binary (up/down) and ternary (up/flat/down) labeling schemes. Our analysis compares models on out of sample accuracy, latency, and robustness to noise. Results reveal that, with data preprocessing and hyperparameter tuning, simpler models can match and even exceed the performance of more complex networks, offering faster inference and greater interpretability.
Abstract:To reduce model size during post-training, compression methods, including knowledge distillation, low-rank approximation, and pruning, are often applied after fine-tuning the model. However, sequential fine-tuning and compression sacrifices performance, while creating a larger than necessary model as an intermediate step. In this work, we aim to reduce this gap, by directly constructing a smaller model while guided by the downstream task. We propose to jointly fine-tune and compress the model by gradually distilling it to a pruned low-rank structure. Experiments demonstrate that joint fine-tuning and compression significantly outperforms other sequential compression methods.
Abstract:Modern foundation models such as large language models (LLMs) and large multi-modal models (LMMs) require a massive amount of computational and memory resources. We propose a new framework to convert such LLMs/LMMs into a reduced-dimension latent structure. Our method extends a local activation-aware tensor decomposition to a global attention-aware joint tensor de-composition. Our framework can significantly improve the model accuracy over the existing model compression methods when reducing the latent dimension to realize computationally/memory-efficient LLMs/LLMs. We show the benefit on several benchmark including multi-modal reasoning tasks.
Abstract:Task robust adaptation is a long-standing pursuit in sequential decision-making. Some risk-averse strategies, e.g., the conditional value-at-risk principle, are incorporated in domain randomization or meta reinforcement learning to prioritize difficult tasks in optimization, which demand costly intensive evaluations. The efficiency issue prompts the development of robust active task sampling to train adaptive policies, where risk-predictive models are used to surrogate policy evaluation. This work characterizes the optimization pipeline of robust active task sampling as a Markov decision process, posits theoretical and practical insights, and constitutes robustness concepts in risk-averse scenarios. Importantly, we propose an easy-to-implement method, referred to as Posterior and Diversity Synergized Task Sampling (PDTS), to accommodate fast and robust sequential decision-making. Extensive experiments show that PDTS unlocks the potential of robust active task sampling, significantly improves the zero-shot and few-shot adaptation robustness in challenging tasks, and even accelerates the learning process under certain scenarios. Our project website is at https://thu-rllab.github.io/PDTS_project_page.
Abstract:Federated Class-Incremental Learning (FCIL) refers to a scenario where a dynamically changing number of clients collaboratively learn an ever-increasing number of incoming tasks. FCIL is known to suffer from local forgetting due to class imbalance at each client and global forgetting due to class imbalance across clients. We develop a mathematical framework for FCIL that formulates local and global forgetting. Then, we propose an approach called Hybrid Rehearsal (HR), which utilizes latent exemplars and data-free techniques to address local and global forgetting, respectively. HR employs a customized autoencoder designed for both data classification and the generation of synthetic data. To determine the embeddings of new tasks for all clients in the latent space of the encoder, the server uses the Lennard-Jones Potential formulations. Meanwhile, at the clients, the decoder decodes the stored low-dimensional latent space exemplars back to the high-dimensional input space, used to address local forgetting. To overcome global forgetting, the decoder generates synthetic data. Furthermore, our mathematical framework proves that our proposed approach HR can, in principle, tackle the two local and global forgetting challenges. In practice, extensive experiments demonstrate that while preserving privacy, our proposed approach outperforms the state-of-the-art baselines on multiple FCIL benchmarks with low compute and memory footprints.
Abstract:Translating between languages with drastically different grammatical conventions poses challenges, not just for human interpreters but also for machine translation systems. In this work, we specifically target the translation challenges posed by attributive nouns in Chinese, which frequently cause ambiguities in English translation. By manually inserting the omitted particle X ('DE'). In news article titles from the Penn Chinese Discourse Treebank, we developed a targeted dataset to fine-tune Hugging Face Chinese to English translation models, specifically improving how this critical function word is handled. This focused approach not only complements the broader strategies suggested by previous studies but also offers a practical enhancement by specifically addressing a common error type in Chinese-English translation.
Abstract:Achieving high levels of safety and reliability in autonomous driving remains a critical challenge, especially due to occlusion and limited perception ranges in standalone systems. Cooperative perception among vehicles offers a promising solution, but existing research is hindered by datasets with a limited number of agents. Scaling up the number of cooperating agents is non-trivial and introduces significant computational and technical hurdles that have not been addressed in previous works. To bridge this gap, we present Wireless enHanced Autonomous vehicles with Large number of Engaged agentS (WHALES), a dataset generated using CARLA simulator that features an unprecedented average of 8.4 agents per driving sequence. In addition to providing the largest number of agents and viewpoints among autonomous driving datasets, WHALES records agent behaviors, enabling cooperation across multiple tasks. This expansion allows for new supporting tasks in cooperative perception. As a demonstration, we conduct experiments on agent scheduling task, where the ego agent selects one of multiple candidate agents to cooperate with, optimizing perception gains in autonomous driving. The WHALES dataset and codebase can be found at https://github.com/chensiweiTHU/WHALES.
Abstract:Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
Abstract:This paper focuses on the data-insufficiency problem in multi-task learning within an episodic training setup. Specifically, we explore the potential of heterogeneous information across tasks and meta-knowledge among episodes to effectively tackle each task with limited data. Existing meta-learning methods often fail to take advantage of crucial heterogeneous information in a single episode, while multi-task learning models neglect reusing experience from earlier episodes. To address the problem of insufficient data, we develop Heterogeneous Neural Processes (HNPs) for the episodic multi-task setup. Within the framework of hierarchical Bayes, HNPs effectively capitalize on prior experiences as meta-knowledge and capture task-relatedness among heterogeneous tasks, mitigating data-insufficiency. Meanwhile, transformer-structured inference modules are designed to enable efficient inferences toward meta-knowledge and task-relatedness. In this way, HNPs can learn more powerful functional priors for adapting to novel heterogeneous tasks in each meta-test episode. Experimental results show the superior performance of the proposed HNPs over typical baselines, and ablation studies verify the effectiveness of the designed inference modules.
Abstract:We introduce a multi-sensor navigation system for autonomous surface vessels (ASV) intended for water-quality monitoring in freshwater lakes. Our mission planner uses satellite imagery as a prior map, formulating offline a mission-level policy for global navigation of the ASV and enabling autonomous online execution via local perception and local planning modules. A significant challenge is posed by the inconsistencies in traversability estimation between satellite images and real lakes, due to environmental effects such as wind, aquatic vegetation, shallow waters, and fluctuating water levels. Hence, we specifically modelled these traversability uncertainties as stochastic edges in a graph and optimized for a mission-level policy that minimizes the expected total travel distance. To execute the policy, we propose a modern local planner architecture that processes sensor inputs and plans paths to execute the high-level policy under uncertain traversability conditions. Our system was tested on three km-scale missions on a Northern Ontario lake, demonstrating that our GPS-, vision-, and sonar-enabled ASV system can effectively execute the mission-level policy and disambiguate the traversability of stochastic edges. Finally, we provide insights gained from practical field experience and offer several future directions to enhance the overall reliability of ASV navigation systems.