Diffusion-based face swapping achieves state-of-the-art performance, yet it also exacerbates the potential harm of malicious face swapping to violate portraiture right or undermine personal reputation. This has spurred the development of proactive defense methods. However, existing approaches face a core trade-off: large perturbations distort facial structures, while small ones weaken protection effectiveness. To address these issues, we propose FaceDefense, an enhanced proactive defense framework against diffusion-based face swapping. Our method introduces a new diffusion loss to strengthen the defensive efficacy of adversarial examples, and employs a directional facial attribute editing to restore perturbation-induced distortions, thereby enhancing visual imperceptibility. A two-phase alternating optimization strategy is designed to generate final perturbed face images. Extensive experiments show that FaceDefense significantly outperforms existing methods in both imperceptibility and defense effectiveness, achieving a superior trade-off.
Botulinum toxin (Botox) injections are the gold standard for managing facial asymmetry and aesthetic rejuvenation, yet determining the optimal dosage remains largely intuitive, often leading to suboptimal outcomes. We propose a localized latent editing framework that simulates Botulinum Toxin injection effects for injection planning through dose-response modeling. Our key contribution is a Region-Specific Latent Axis Discovery method that learns localized muscle relaxation trajectories in StyleGAN2's latent space, enabling precise control over specific facial regions without global side effects. By correlating these localized latent trajectories with injected toxin units, we learn a predictive dose-response model. We rigorously compare two approaches: direct metric regression versus image-based generative simulation on a clinical dataset of N=360 images from 46 patients. On a hold-out test set, our framework demonstrates moderate-to-strong structural correlations for geometric asymmetry metrics, confirming that the generative model correctly captures the direction of morphological changes. While biological variability limits absolute precision, we introduce a hybrid "Human-in-the-Loop" workflow where clinicians interactively refine simulations, bridging the gap between pathological reconstruction and cosmetic planning.
Audio-Visual Foundation Models, which are pretrained to jointly generate sound and visual content, have recently shown an unprecedented ability to model multi-modal generation and editing, opening new opportunities for downstream tasks. Among these tasks, video dubbing could greatly benefit from such priors, yet most existing solutions still rely on complex, task-specific pipelines that struggle in real-world settings. In this work, we introduce a single-model approach that adapts a foundational audio-video diffusion model for video-to-video dubbing via a lightweight LoRA. The LoRA enables the model to condition on an input audio-video while jointly generating translated audio and synchronized facial motion. To train this LoRA, we leverage the generative model itself to synthesize paired multilingual videos of the same speaker. Specifically, we generate multilingual videos with language switches within a single clip, and then inpaint the face and audio in each half to match the language of the other half. By leveraging the rich generative prior of the audio-visual model, our approach preserves speaker identity and lip synchronization while remaining robust to complex motion and real-world dynamics. We demonstrate that our approach produces high-quality dubbed videos with improved visual fidelity, lip synchronization, and robustness compared to existing dubbing pipelines.
Generative models now produce imperceptible, fine-grained manipulated faces, posing significant privacy risks. However, existing AI-generated face datasets generally lack focus on samples with fine-grained regional manipulations. Furthermore, no researchers have yet studied the real impact of splice attacks, which occur between real and manipulated samples, on detectors. We refer to these as detector-evasive samples. Based on this, we introduce the DiffFace-Edit dataset, which has the following advantages: 1) It contains over two million AI-generated fake images. 2) It features edits across eight facial regions (e.g., eyes, nose) and includes a richer variety of editing combinations, such as single-region and multi-region edits. Additionally, we specifically analyze the impact of detector-evasive samples on detection models. We conduct a comprehensive analysis of the dataset and propose a cross-domain evaluation that combines IMDL methods. Dataset will be available at https://github.com/ywh1093/DiffFace-Edit.
The rapid evolution of diffusion models has democratized face swapping but also raises concerns about privacy and identity security. Existing proactive defenses, often adapted from image editing attacks, prove ineffective in this context. We attribute this failure to an oversight of the structural resilience and the unique static conditional guidance mechanism inherent in face swapping systems. To address this, we propose VoidFace, a systemic defense method that views face swapping as a coupled identity pathway. By injecting perturbations at critical bottlenecks, VoidFace induces cascading disruption throughout the pipeline. Specifically, we first introduce localization disruption and identity erasure to degrade physical regression and semantic embeddings, thereby impairing the accurate modeling of the source face. We then intervene in the generative domain by decoupling attention mechanisms to sever identity injection, and corrupting intermediate diffusion features to prevent the reconstruction of source identity. To ensure visual imperceptibility, we perform adversarial search in the latent manifold, guided by a perceptual adaptive strategy to balance attack potency with image quality. Extensive experiments show that VoidFace outperforms existing defenses across various diffusion-based swapping models, while producing adversarial faces with superior visual quality.
Speech-driven 3D facial animation aims to generate realistic and expressive facial motions directly from audio. While recent methods achieve high-quality lip synchronization, they often rely on discrete emotion categories, limiting continuous and fine-grained emotional control. We present EditEmoTalk, a controllable speech-driven 3D facial animation framework with continuous emotion editing. The key idea is a boundary-aware semantic embedding that learns the normal directions of inter-emotion decision boundaries, enabling a continuous expression manifold for smooth emotion manipulation. Moreover, we introduce an emotional consistency loss that enforces semantic alignment between the generated motion dynamics and the target emotion embedding through a mapping network, ensuring faithful emotional expression. Extensive experiments demonstrate that EditEmoTalk achieves superior controllability, expressiveness, and generalization while maintaining accurate lip synchronization. Code and pretrained models will be released.
Vision-Language Models (VLMs) are increasingly deployed in socially consequential settings, raising concerns about social bias driven by demographic cues. A central challenge in measuring such social bias is attribution under visual confounding: real-world images entangle race and gender with correlated factors such as background and clothing, obscuring attribution. We propose a \textbf{face-only counterfactual evaluation paradigm} that isolates demographic effects while preserving real-image realism. Starting from real photographs, we generate counterfactual variants by editing only facial attributes related to race and gender, keeping all other visual factors fixed. Based on this paradigm, we construct \textbf{FOCUS}, a dataset of 480 scene-matched counterfactual images across six occupations and ten demographic groups, and propose \textbf{REFLECT}, a benchmark comprising three decision-oriented tasks: two-alternative forced choice, multiple-choice socioeconomic inference, and numeric salary recommendation. Experiments on five state-of-the-art VLMs reveal that demographic disparities persist under strict visual control and vary substantially across task formulations. These findings underscore the necessity of controlled, counterfactual audits and highlight task design as a critical factor in evaluating social bias in multimodal models.
We present StdGEN++, a novel and comprehensive system for generating high-fidelity, semantically decomposed 3D characters from diverse inputs. Existing 3D generative methods often produce monolithic meshes that lack the structural flexibility required by industrial pipelines in gaming and animation. Addressing this gap, StdGEN++ is built upon a Dual-branch Semantic-aware Large Reconstruction Model (Dual-Branch S-LRM), which jointly reconstructs geometry, color, and per-component semantics in a feed-forward manner. To achieve production-level fidelity, we introduce a novel semantic surface extraction formalism compatible with hybrid implicit fields. This mechanism is accelerated by a coarse-to-fine proposal scheme, which significantly reduces memory footprint and enables high-resolution mesh generation. Furthermore, we propose a video-diffusion-based texture decomposition module that disentangles appearance into editable layers (e.g., separated iris and skin), resolving semantic confusion in facial regions. Experiments demonstrate that StdGEN++ achieves state-of-the-art performance, significantly outperforming existing methods in geometric accuracy and semantic disentanglement. Crucially, the resulting structural independence unlocks advanced downstream capabilities, including non-destructive editing, physics-compliant animation, and gaze tracking, making it a robust solution for automated character asset production.
Face Attribute Recognition (FAR) plays a crucial role in applications such as person re-identification, face retrieval, and face editing. Conventional multi-task attribute recognition methods often process the entire feature map for feature extraction and attribute classification, which can produce redundant features due to reliance on global regions. To address these challenges, we propose a novel approach emphasizing the selection of specific feature regions for efficient feature learning. We introduce the Mask-Guided Multi-Task Network (MGMTN), which integrates Adaptive Mask Learning (AML) and Group-Global Feature Fusion (G2FF) to address the aforementioned limitations. Leveraging a pre-trained keypoint annotation model and a fully convolutional network, AML accurately localizes critical facial parts (e.g., eye and mouth groups) and generates group masks that delineate meaningful feature regions, thereby mitigating negative transfer from global region usage. Furthermore, G2FF combines group and global features to enhance FAR learning, enabling more precise attribute identification. Extensive experiments on two challenging facial attribute recognition datasets demonstrate the effectiveness of MGMTN in improving FAR performance.




Talking face editing and face generation have often been studied as distinct problems. In this work, we propose viewing both not as separate tasks but as subtasks of a unifying formulation, speech-conditional facial motion infilling. We explore facial motion infilling as a self-supervised pretext task that also serves as a unifying formulation of dynamic talking face synthesis. To instantiate this idea, we propose FacEDiT, a speech-conditional Diffusion Transformer trained with flow matching. Inspired by masked autoencoders, FacEDiT learns to synthesize masked facial motions conditioned on surrounding motions and speech. This formulation enables both localized generation and edits, such as substitution, insertion, and deletion, while ensuring seamless transitions with unedited regions. In addition, biased attention and temporal smoothness constraints enhance boundary continuity and lip synchronization. To address the lack of a standard editing benchmark, we introduce FacEDiTBench, the first dataset for talking face editing, featuring diverse edit types and lengths, along with new evaluation metrics. Extensive experiments validate that talking face editing and generation emerge as subtasks of speech-conditional motion infilling; FacEDiT produces accurate, speech-aligned facial edits with strong identity preservation and smooth visual continuity while generalizing effectively to talking face generation.