Abstract:Large language models (LLMs) excel at capturing global token dependencies via self-attention but face prohibitive compute and memory costs on lengthy inputs. While sub-quadratic methods (e.g., linear attention) can reduce these costs, they often degrade accuracy due to overemphasizing recent tokens. In this work, we first propose dual-state linear attention (DSLA), a novel design that maintains two specialized hidden states-one for preserving historical context and one for tracking recency-thereby mitigating the short-range bias typical of linear-attention architectures. To further balance efficiency and accuracy under dynamic workload conditions, we introduce DSLA-Serve, an online adaptive distillation framework that progressively replaces Transformer layers with DSLA layers at inference time, guided by a sensitivity-based layer ordering. DSLA-Serve uses a chained fine-tuning strategy to ensure that each newly converted DSLA layer remains consistent with previously replaced layers, preserving the overall quality. Extensive evaluations on commonsense reasoning, long-context QA, and text summarization demonstrate that DSLA-Serve yields 2.3x faster inference than Llama2-7B and 3.0x faster than the hybrid Zamba-7B, while retaining comparable performance across downstream tasks. Our ablation studies show that DSLA's dual states capture both global and local dependencies, addressing the historical-token underrepresentation seen in prior linear attentions. Codes are available at https://github.com/utnslab/DSLA-Serve.
Abstract:Although scaling up the number of trainable parameters in both pre-training and fine-tuning can effectively improve the performance of large language models, it also leads to increased computational overhead. When delving into the parameter difference, we find that a subset of parameters, termed advantageous parameters, plays a crucial role in determining model performance. Further analysis reveals that stronger models tend to possess more such parameters. In this paper, we propose Advantageous Parameter EXpansion Training (APEX), a method that progressively expands advantageous parameters into the space of disadvantageous ones, thereby increasing their proportion and enhancing training effectiveness. Further theoretical analysis from the perspective of matrix effective rank explains the performance gains of APEX. Extensive experiments on both instruction tuning and continued pre-training demonstrate that, in instruction tuning, APEX outperforms full-parameter tuning while using only 52% of the trainable parameters. In continued pre-training, APEX achieves the same perplexity level as conventional training with just 33% of the training data, and yields significant improvements on downstream tasks.
Abstract:Diffusion-based image super-resolution (SR) methods have demonstrated remarkable performance. Recent advancements have introduced deterministic sampling processes that reduce inference from 15 iterative steps to a single step, thereby significantly improving the inference speed of existing diffusion models. However, their efficiency remains limited when handling complex semantic regions due to the single-step inference. To address this limitation, we propose SAMSR, a semantic-guided diffusion framework that incorporates semantic segmentation masks into the sampling process. Specifically, we introduce the SAM-Noise Module, which refines Gaussian noise using segmentation masks to preserve spatial and semantic features. Furthermore, we develop a pixel-wise sampling strategy that dynamically adjusts the residual transfer rate and noise strength based on pixel-level semantic weights, prioritizing semantically rich regions during the diffusion process. To enhance model training, we also propose a semantic consistency loss, which aligns pixel-wise semantic weights between predictions and ground truth. Extensive experiments on both real-world and synthetic datasets demonstrate that SAMSR significantly improves perceptual quality and detail recovery, particularly in semantically complex images. Our code is released at https://github.com/Liu-Zihang/SAMSR.
Abstract:Large Language Models (LLMs), while demonstrating remarkable capabilities across various applications, present significant challenges during inference due to their substantial model size, especially when deployed on edge devices. Activation sparsity offers a promising solution to reduce computation and memory movement, enabling more efficient inference, particularly for small-batch on-device applications. However, current approaches face limitations with non-ReLU activation function, which are foundational to most advanced LLMs, or require heavy continual training. Additionally, the difficulty in predicting active channels and limited achievable sparsity ratios constrain the effectiveness of activation sparsity-based methods. In this paper, we introduce R-Sparse, a training-free activation sparsity approach capable of achieving high sparsity levels in advanced LLMs. We conducted two preliminary investigations into how different components contribute to the output within a single linear layer and found two key observations: (i) the non-sparse components of the input function can be regarded as a few bias terms, and (ii) The full computation can be effectively approximated by an appropriate combination of input channels and weight singular values. Building on this, we replace the linear layers in LLMs with a rank-aware sparse inference method that leverages the sparsity of input channels and singular value components, eliminating the need for active channel prediction like the output sparsity based approaches. Experiments on Llama-2/3 and Mistral models across ten diverse tasks demonstrate that R-Sparse achieves comparable performance at 50% model-level sparsity, resulting in a significant 43% end-to-end efficient improvements with customized kernels.
Abstract:Cross-Domain Few-Shot Object Detection (CD-FSOD) poses significant challenges to existing object detection and few-shot detection models when applied across domains. In conjunction with NTIRE 2025, we organized the 1st CD-FSOD Challenge, aiming to advance the performance of current object detectors on entirely novel target domains with only limited labeled data. The challenge attracted 152 registered participants, received submissions from 42 teams, and concluded with 13 teams making valid final submissions. Participants approached the task from diverse perspectives, proposing novel models that achieved new state-of-the-art (SOTA) results under both open-source and closed-source settings. In this report, we present an overview of the 1st NTIRE 2025 CD-FSOD Challenge, highlighting the proposed solutions and summarizing the results submitted by the participants.
Abstract:Orthogonal time-frequency space (OTFS) is a potential waveform for integrated sensing and communications (ISAC) systems because it can manage communication and sensing metrics in one unified domain, and has better performance in high mobility scenarios. In practice, a target might come from far distance or with ultra-high speed. However, the max unambiguous range and max tolerable velocity of OTFS-ISAC system is limited by the unambiguous round-trip delay and Doppler shift, which are related to OTFS frame, i.e., time slots and subcarrier spacing, respectively. To enlarge the sensing range, a novel OTFS cross-frame ranging and velocity estimation model as well as its corresponding method based on the Chinese remainder theorem (CRT) are proposed in this paper. By designing co-prime numbers of subcarriers and time slots in different subframes, the difference in the responses of the subframes for a target can be used to estimate the distance and velocity of an out-of-range target. Several frame structures are further designed for specific sensing scenarios, such as target with ultra-high speed or at far distance. Simulation results show that the proposed method can achieve significantly better performance in NMSE compared with the classic sensing methods under the condition of same time and frequency resources.
Abstract:Pre-trained conditional diffusion models have demonstrated remarkable potential in image editing. However, they often face challenges with temporal consistency, particularly in the talking head domain, where continuous changes in facial expressions intensify the level of difficulty. These issues stem from the independent editing of individual images and the inherent loss of temporal continuity during the editing process. In this paper, we introduce Follow Your Motion (FYM), a generic framework for maintaining temporal consistency in portrait editing. Specifically, given portrait images rendered by a pre-trained 3D Gaussian Splatting model, we first develop a diffusion model that intuitively and inherently learns motion trajectory changes at different scales and pixel coordinates, from the first frame to each subsequent frame. This approach ensures that temporally inconsistent edited avatars inherit the motion information from the rendered avatars. Secondly, to maintain fine-grained expression temporal consistency in talking head editing, we propose a dynamic re-weighted attention mechanism. This mechanism assigns higher weight coefficients to landmark points in space and dynamically updates these weights based on landmark loss, achieving more consistent and refined facial expressions. Extensive experiments demonstrate that our method outperforms existing approaches in terms of temporal consistency and can be used to optimize and compensate for temporally inconsistent outputs in a range of applications, such as text-driven editing, relighting, and various other applications.
Abstract:With the advancement of Industry 4.0, intelligent manufacturing extensively employs sensors for real-time multidimensional data collection, playing a crucial role in equipment monitoring, process optimisation, and efficiency enhancement. Industrial data exhibit characteristics such as multi-source heterogeneity, nonlinearity, strong coupling, and temporal interactions, while also being affected by noise interference. These complexities make it challenging for traditional anomaly detection methods to extract key features, impacting detection accuracy and stability. Traditional machine learning approaches often struggle with such complex data due to limitations in processing capacity and generalisation ability, making them inadequate for practical applications. While deep learning feature extraction modules have demonstrated remarkable performance in image and text processing, they remain ineffective when applied to multi-source heterogeneous industrial data lacking explicit correlations. Moreover, existing multi-source heterogeneous data processing techniques still rely on dimensionality reduction and feature selection, which can lead to information loss and difficulty in capturing high-order interactions. To address these challenges, this study applies the EAPCR and Time-EAPCR models proposed in previous research and introduces a new model, Time-EAPCR-T, where Transformer replaces the LSTM module in the time-series processing component of Time-EAPCR. This modification effectively addresses multi-source data heterogeneity, facilitates efficient multi-source feature fusion, and enhances the temporal feature extraction capabilities of multi-source industrial data.Experimental results demonstrate that the proposed method outperforms existing approaches across four industrial datasets, highlighting its broad application potential.
Abstract:Modular Aerial Robotic Systems (MARS) consist of multiple drone units that can self-reconfigure to adapt to various mission requirements and fault conditions. However, existing fault-tolerant control methods exhibit significant oscillations during docking and separation, impacting system stability. To address this issue, we propose a novel fault-tolerant control reallocation method that adapts to arbitrary number of modular robots and their assembly formations. The algorithm redistributes the expected collective force and torque required for MARS to individual unit according to their moment arm relative to the center of MARS mass. Furthermore, We propose an agile trajectory planning method for MARS of arbitrary configurations, which is collision-avoiding and dynamically feasible. Our work represents the first comprehensive approach to enable fault-tolerant and collision avoidance flight for MARS. We validate our method through extensive simulations, demonstrating improved fault tolerance, enhanced trajectory tracking accuracy, and greater robustness in cluttered environments. The videos and source code of this work are available at https://github.com/RuiHuangNUS/MARS-FTCC/
Abstract:As human activities intensify, environmental systems such as aquatic ecosystems and water treatment systems face increasingly complex pressures, impacting ecological balance, public health, and sustainable development, making intelligent anomaly monitoring essential. However, traditional monitoring methods suffer from delayed responses, insufficient data processing capabilities, and weak generalisation, making them unsuitable for complex environmental monitoring needs.In recent years, machine learning has been widely applied to anomaly detection, but the multi-dimensional features and spatiotemporal dynamics of environmental ecological data, especially the long-term dependencies and strong variability in the time dimension, limit the effectiveness of traditional methods.Deep learning, with its ability to automatically learn features, captures complex nonlinear relationships, improving detection performance. However, its application in environmental monitoring is still in its early stages and requires further exploration.This paper introduces a new deep learning method, Time-EAPCR (Time-Embedding-Attention-Permutated CNN-Residual), and applies it to environmental science. The method uncovers feature correlations, captures temporal evolution patterns, and enables precise anomaly detection in environmental systems.We validated Time-EAPCR's high accuracy and robustness across four publicly available environmental datasets. Experimental results show that the method efficiently handles multi-source data, improves detection accuracy, and excels across various scenarios with strong adaptability and generalisation. Additionally, a real-world river monitoring dataset confirmed the feasibility of its deployment, providing reliable technical support for environmental monitoring.