Abstract:Large language models (LLMs) with the Mixture-of-Experts (MoE) architecture achieve high cost-efficiency by selectively activating a subset of the parameters. Despite the inference efficiency of MoE LLMs, the training of extensive experts from scratch incurs substantial overhead, whereas reconstructing a dense LLM into an MoE LLM significantly reduces the training budget. However, existing reconstruction methods often overlook the diversity among experts, leading to potential redundancy. In this paper, we come up with the observation that a specific LLM exhibits notable diversity after being pruned on different calibration datasets, based on which we present a Diversity-Enhanced reconstruction method named DIVE. The recipe of DIVE includes domain affinity mining, pruning-based expert reconstruction, and efficient retraining. Specifically, the reconstruction includes pruning and reassembly of the feed-forward network (FFN) module. After reconstruction, we efficiently retrain the model on routers, experts and normalization modules. We implement DIVE on Llama-style LLMs with open-source training corpora. Experiments show that DIVE achieves training efficiency with minimal accuracy trade-offs, outperforming existing pruning and MoE reconstruction methods with the same number of activated parameters.
Abstract:Despite the commendable progress of recent LLM-based data synthesis methods, they face two limitations in generating table instruction tuning data. First, they can not thoroughly explore the vast input space of table understanding tasks, leading to limited data diversity. Second, they ignore the weaknesses in table understanding ability of the target LLM and blindly pursue the increase of data quantity, resulting in suboptimal data efficiency. In this paper, we introduce a progressive and weakness-guided data synthesis framework tailored for table instruction tuning, named TableDreamer, to mitigate the above issues. Specifically, we first synthesize diverse tables and related instructions as seed data, and then perform an iterative exploration of the input space under the guidance of the newly identified weakness data, which eventually serve as the final training data for fine-tuning the target LLM. Extensive experiments on 10 tabular benchmarks demonstrate the effectiveness of the proposed framework, which boosts the average accuracy of Llama3.1-8B-instruct by 11.62% (49.07% to 60.69%) with 27K GPT-4o synthetic data and outperforms state-of-the-art data synthesis baselines which use more training data. The code and data is available at https://github.com/SpursGoZmy/TableDreamer
Abstract:Parameter-efficient fine-tuning (PEFT) has become a common method for fine-tuning large language models, where a base model can serve multiple users through PEFT module switching. To enhance user experience, base models require periodic updates. However, once updated, PEFT modules fine-tuned on previous versions often suffer substantial performance degradation on newer versions. Re-tuning these numerous modules to restore performance would incur significant computational costs. Through a comprehensive analysis of the changes that occur during base model updates, we uncover an interesting phenomenon: continual training primarily affects task-specific knowledge stored in Feed-Forward Networks (FFN), while having less impact on the task-specific pattern in the Attention mechanism. Based on these findings, we introduce Trans-PEFT, a novel approach that enhances the PEFT module by focusing on the task-specific pattern while reducing its dependence on certain knowledge in the base model. Further theoretical analysis supports our approach. Extensive experiments across 7 base models and 12 datasets demonstrate that Trans-PEFT trained modules can maintain performance on updated base models without re-tuning, significantly reducing maintenance overhead in real-world applications.
Abstract:Knowledge editing aims to alternate the target knowledge predicted by large language models while ensuring the least side effects on unrelated knowledge. An effective way to achieve knowledge editing is to identify pivotal parameters for predicting factual associations and modify them with an optimization process to update the predictions. However, these locate-then-edit methods are uncontrollable since they tend to modify most unrelated relations connected to the subject of target editing. We unveil that this failure of controllable editing is due to a shortcut learning issue during the optimization process. Specifically, we discover two crucial features that are the subject feature and the relation feature for models to learn during optimization, but the current optimization process tends to over-learning the subject feature while neglecting the relation feature. To eliminate this shortcut learning of the subject feature, we propose a novel two-stage optimization process that balances the learning of the subject feature and the relation feature. Experimental results demonstrate that our approach successfully prevents knowledge editing from shortcut learning and achieves the optimal overall performance, contributing to controllable knowledge editing.
Abstract:Although scaling up the number of trainable parameters in both pre-training and fine-tuning can effectively improve the performance of large language models, it also leads to increased computational overhead. When delving into the parameter difference, we find that a subset of parameters, termed advantageous parameters, plays a crucial role in determining model performance. Further analysis reveals that stronger models tend to possess more such parameters. In this paper, we propose Advantageous Parameter EXpansion Training (APEX), a method that progressively expands advantageous parameters into the space of disadvantageous ones, thereby increasing their proportion and enhancing training effectiveness. Further theoretical analysis from the perspective of matrix effective rank explains the performance gains of APEX. Extensive experiments on both instruction tuning and continued pre-training demonstrate that, in instruction tuning, APEX outperforms full-parameter tuning while using only 52% of the trainable parameters. In continued pre-training, APEX achieves the same perplexity level as conventional training with just 33% of the training data, and yields significant improvements on downstream tasks.
Abstract:Video action understanding tasks in real-world scenarios always suffer data limitations. In this paper, we address the data-limited action understanding problem by bridging data scarcity. We propose a novel method that employs a text-to-video diffusion transformer to generate annotated data for model training. This paradigm enables the generation of realistic annotated data on an infinite scale without human intervention. We proposed the information enhancement strategy and the uncertainty-based label smoothing tailored to generate sample training. Through quantitative and qualitative analysis, we observed that real samples generally contain a richer level of information than generated samples. Based on this observation, the information enhancement strategy is proposed to enhance the informative content of the generated samples from two aspects: the environments and the characters. Furthermore, we observed that some low-quality generated samples might negatively affect model training. To address this, we devised the uncertainty-based label smoothing strategy to increase the smoothing of these samples, thus reducing their impact. We demonstrate the effectiveness of the proposed method on four datasets across five tasks and achieve state-of-the-art performance for zero-shot action recognition.
Abstract:The Key-Value (KV) cache in generative large language models (LLMs) introduces substantial memory overhead. Existing works mitigate this burden by offloading or compressing the KV cache. However, loading the entire cache incurs significant latency due to PCIe bandwidth bottlenecks in CPU-GPU communication, while aggressive compression causes notable performance degradation. We identify that certain layers in the LLM need to maintain global information and are unsuitable for selective loading. In contrast, other layers primarily focus on a few tokens with dominant activations that potentially incur substantial quantization error. This observation leads to a key insight that loading dominant tokens and quantizing all tokens can complement each other. Building on this insight, we propose a hybrid compression method, TailorKV, which seamlessly integrates quantization and offloading. TailorKV develops an inference framework along with a hardware-friendly implementation that leverages these complementary characteristics. Extensive long-context evaluations exhibit that TailorKV achieves nearly lossless performance under aggressive compression settings, outperforming the state-of-the-art. Particularly, the Llama-3.1-8B with 128k context can be served within a single RTX 3090 GPU, reaching 82 ms per token during decoding.
Abstract:Despite significant advancements in multimodal reasoning tasks, existing Large Vision-Language Models (LVLMs) are prone to producing visually ungrounded responses when interpreting associated images. In contrast, when humans embark on learning new knowledge, they often rely on a set of fundamental pre-study principles: reviewing outlines to grasp core concepts, summarizing key points to guide their focus and enhance understanding. However, such preparatory actions are notably absent in the current instruction tuning processes. This paper presents Re-Critic, an easily scalable rationale-augmented framework designed to incorporate fundamental rules and chain-of-thought (CoT) as a bridge to enhance reasoning abilities. Specifically, Re-Critic develops a visual rationale synthesizer that scalably augments raw instructions with rationale explanation. To probe more contextually grounded responses, Re-Critic employs an in-context self-critic mechanism to select response pairs for preference tuning. Experiments demonstrate that models fine-tuned with our rationale-augmented dataset yield gains that extend beyond hallucination-specific tasks to broader multimodal reasoning tasks.
Abstract:Accurate extraction of molecular representations is a critical step in the drug discovery process. In recent years, significant progress has been made in molecular representation learning methods, among which multi-modal molecular representation methods based on images, and 2D/3D topologies have become increasingly mainstream. However, existing these multi-modal approaches often directly fuse information from different modalities, overlooking the potential of intermodal interactions and failing to adequately capture the complex higher-order relationships and invariant features between molecules. To overcome these challenges, we propose a structure-awareness-based multi-modal self-supervised molecular representation pre-training framework (MMSA) designed to enhance molecular graph representations by leveraging invariant knowledge between molecules. The framework consists of two main modules: the multi-modal molecular representation learning module and the structure-awareness module. The multi-modal molecular representation learning module collaboratively processes information from different modalities of the same molecule to overcome intermodal differences and generate a unified molecular embedding. Subsequently, the structure-awareness module enhances the molecular representation by constructing a hypergraph structure to model higher-order correlations between molecules. This module also introduces a memory mechanism for storing typical molecular representations, aligning them with memory anchors in the memory bank to integrate invariant knowledge, thereby improving the model generalization ability. Extensive experiments have demonstrated the effectiveness of MMSA, which achieves state-of-the-art performance on the MoleculeNet benchmark, with average ROC-AUC improvements ranging from 1.8% to 9.6% over baseline methods.
Abstract:Recent advances in large reasoning language models (LRLMs) rely on test-time scaling, which extends long chain-of-thought (CoT) generation to solve complex tasks. However, overthinking in long CoT not only slows down the efficiency of problem solving, but also risks accuracy loss due to the extremely detailed or redundant reasoning steps. We propose a simple yet effective method that allows LLMs to self-truncate CoT sequences by early exit during generation. Instead of relying on fixed heuristics, the proposed method monitors model behavior at potential reasoning transition points (e.g.,"Wait" tokens) and dynamically terminates the next reasoning chain's generation when the model exhibits high confidence in a trial answer. Our method requires no additional training and can be seamlessly integrated into existing o1-like reasoning LLMs. Experiments on multiple reasoning benchmarks MATH-500, AMC 2023, GPQA Diamond and AIME 2024 show that the proposed method is consistently effective on deepseek-series reasoning LLMs, reducing the length of CoT sequences by an average of 31% to 43% while improving accuracy by 1.7% to 5.7%.