Abstract:Humans can develop new theorems to explore broader and more complex mathematical results. While current generative language models (LMs) have achieved significant improvement in automatically proving theorems, their ability to generate new or reusable theorems is still under-explored. Without the new theorems, current LMs struggle to prove harder theorems that are distant from the given hypotheses with the exponentially growing search space. Therefore, this paper proposes an Automated Theorem Generation (ATG) benchmark that evaluates whether an agent can automatically generate valuable (and possibly brand new) theorems that are applicable for downstream theorem proving as reusable knowledge. Specifically, we construct the ATG benchmark by splitting the Metamath library into three sets: axioms, library, and problem based on their proving depth. We conduct extensive experiments to investigate whether current LMs can generate theorems in the library and benefit the problem theorems proving. The results demonstrate that high-quality ATG data facilitates models' performances on downstream ATP. However, there is still room for current LMs to develop better ATG and generate more advanced and human-like theorems. We hope the new ATG challenge can shed some light on advanced complex theorem proving.
Abstract:As the capabilities of large language models (LLMs) have expanded dramatically, aligning these models with human values presents a significant challenge, posing potential risks during deployment. Traditional alignment strategies rely heavily on human intervention, such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), or on the self-alignment capacities of LLMs, which usually require a strong LLM's emergent ability to improve its original bad answer. To address these challenges, we propose a novel self-alignment method that utilizes a Chain of Thought (CoT) approach, termed AlignCoT. This method encompasses stages of Question Analysis, Answer Guidance, and Safe Answer production. It is designed to enable LLMs to generate high-quality, safe responses throughout various stages of their development. Furthermore, we introduce the Mixture of insighTful Experts (MoTE) architecture, which applies the mixture of experts to enhance each component of the AlignCoT process, markedly increasing alignment efficiency. The MoTE approach not only outperforms existing methods in aligning LLMs with human values but also highlights the benefits of using self-generated data, revealing the dual benefits of improved alignment and training efficiency.
Abstract:Large Vision-Language Models (LVLMs), due to the remarkable visual reasoning ability to understand images and videos, have received widespread attention in the autonomous driving domain, which significantly advances the development of interpretable end-to-end autonomous driving. However, current evaluations of LVLMs primarily focus on the multi-faceted capabilities in common scenarios, lacking quantifiable and automated assessment in autonomous driving contexts, let alone severe road corner cases that even the state-of-the-art autonomous driving perception systems struggle to handle. In this paper, we propose CODA-LM, a novel vision-language benchmark for self-driving, which provides the first automatic and quantitative evaluation of LVLMs for interpretable autonomous driving including general perception, regional perception, and driving suggestions. CODA-LM utilizes the texts to describe the road images, exploiting powerful text-only large language models (LLMs) without image inputs to assess the capabilities of LVLMs in autonomous driving scenarios, which reveals stronger alignment with human preferences than LVLM judges. Experiments demonstrate that even the closed-sourced commercial LVLMs like GPT-4V cannot deal with road corner cases well, suggesting that we are still far from a strong LVLM-powered intelligent driving agent, and we hope our CODA-LM can become the catalyst to promote future development.
Abstract:Existing open-vocabulary object detectors typically require a predefined set of categories from users, significantly confining their application scenarios. In this paper, we introduce DetCLIPv3, a high-performing detector that excels not only at both open-vocabulary object detection, but also generating hierarchical labels for detected objects. DetCLIPv3 is characterized by three core designs: 1. Versatile model architecture: we derive a robust open-set detection framework which is further empowered with generation ability via the integration of a caption head. 2. High information density data: we develop an auto-annotation pipeline leveraging visual large language model to refine captions for large-scale image-text pairs, providing rich, multi-granular object labels to enhance the training. 3. Efficient training strategy: we employ a pre-training stage with low-resolution inputs that enables the object captioner to efficiently learn a broad spectrum of visual concepts from extensive image-text paired data. This is followed by a fine-tuning stage that leverages a small number of high-resolution samples to further enhance detection performance. With these effective designs, DetCLIPv3 demonstrates superior open-vocabulary detection performance, \eg, our Swin-T backbone model achieves a notable 47.0 zero-shot fixed AP on the LVIS minival benchmark, outperforming GLIPv2, GroundingDINO, and DetCLIPv2 by 18.0/19.6/6.6 AP, respectively. DetCLIPv3 also achieves a state-of-the-art 19.7 AP in dense captioning task on VG dataset, showcasing its strong generative capability.
Abstract:Neural Radiance Fields (NeRF) have shown impressive capabilities for photorealistic novel view synthesis when trained on dense inputs. However, when trained on sparse inputs, NeRF typically encounters issues of incorrect density or color predictions, mainly due to insufficient coverage of the scene causing partial and sparse supervision, thus leading to significant performance degradation. While existing works mainly consider ray-level consistency to construct 2D learning regularization based on rendered color, depth, or semantics on image planes, in this paper we propose a novel approach that models 3D spatial field consistency to improve NeRF's performance with sparse inputs. Specifically, we first adopt a voxel-based ray sampling strategy to ensure that the sampled rays intersect with a certain voxel in 3D space. We then randomly sample additional points within the voxel and apply a Transformer to infer the properties of other points on each ray, which are then incorporated into the volume rendering. By backpropagating through the rendering loss, we enhance the consistency among neighboring points. Additionally, we propose to use a contrastive loss on the encoder output of the Transformer to further improve consistency within each voxel. Experiments demonstrate that our method yields significant improvement over different radiance fields in the sparse inputs setting, and achieves comparable performance with current works.
Abstract:End-to-end driving has made significant progress in recent years, demonstrating benefits such as system simplicity and competitive driving performance under both open-loop and closed-loop settings. Nevertheless, the lack of interpretability and controllability in its driving decisions hinders real-world deployment for end-to-end driving systems. In this paper, we collect a comprehensive end-to-end driving dataset named DriveCoT, leveraging the CARLA simulator. It contains sensor data, control decisions, and chain-of-thought labels to indicate the reasoning process. We utilize the challenging driving scenarios from the CARLA leaderboard 2.0, which involve high-speed driving and lane-changing, and propose a rule-based expert policy to control the vehicle and generate ground truth labels for its reasoning process across different driving aspects and the final decisions. This dataset can serve as an open-loop end-to-end driving benchmark, enabling the evaluation of accuracy in various chain-of-thought aspects and the final decision. In addition, we propose a baseline model called DriveCoT-Agent, trained on our dataset, to generate chain-of-thought predictions and final decisions. The trained model exhibits strong performance in both open-loop and closed-loop evaluations, demonstrating the effectiveness of our proposed dataset.
Abstract:Multimodal large language models (MLLMs) have shown impressive reasoning abilities, which, however, are also more vulnerable to jailbreak attacks than their LLM predecessors. Although still capable of detecting unsafe responses, we observe that safety mechanisms of the pre-aligned LLMs in MLLMs can be easily bypassed due to the introduction of image features. To construct robust MLLMs, we propose ECSO(Eyes Closed, Safety On), a novel training-free protecting approach that exploits the inherent safety awareness of MLLMs, and generates safer responses via adaptively transforming unsafe images into texts to activate intrinsic safety mechanism of pre-aligned LLMs in MLLMs. Experiments on five state-of-the-art (SoTA) MLLMs demonstrate that our ECSO enhances model safety significantly (e.g., a 37.6% improvement on the MM-SafetyBench (SD+OCR), and 71.3% on VLSafe for the LLaVA-1.5-7B), while consistently maintaining utility results on common MLLM benchmarks. Furthermore, we show that ECSO can be used as a data engine to generate supervised-finetuning (SFT) data for MLLM alignment without extra human intervention.
Abstract:Current perceptive models heavily depend on resource-intensive datasets, prompting the need for innovative solutions. Leveraging recent advances in diffusion models, synthetic data, by constructing image inputs from various annotations, proves beneficial for downstream tasks. While prior methods have separately addressed generative and perceptive models, DetDiffusion, for the first time, harmonizes both, tackling the challenges in generating effective data for perceptive models. To enhance image generation with perceptive models, we introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability. To boost the performance of specific perceptive models, our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation. Experimental results from the object detection task highlight DetDiffusion's superior performance, establishing a new state-of-the-art in layout-guided generation. Furthermore, image syntheses from DetDiffusion can effectively augment training data, significantly enhancing downstream detection performance.
Abstract:Text-to-image diffusion models suffer from the risk of generating outdated, copyrighted, incorrect, and biased content. While previous methods have mitigated the issues on a small scale, it is essential to handle them simultaneously in larger-scale real-world scenarios. We propose a two-stage method, Editing Massive Concepts In Diffusion Models (EMCID). The first stage performs memory optimization for each individual concept with dual self-distillation from text alignment loss and diffusion noise prediction loss. The second stage conducts massive concept editing with multi-layer, closed form model editing. We further propose a comprehensive benchmark, named ImageNet Concept Editing Benchmark (ICEB), for evaluating massive concept editing for T2I models with two subtasks, free-form prompts, massive concept categories, and extensive evaluation metrics. Extensive experiments conducted on our proposed benchmark and previous benchmarks demonstrate the superior scalability of EMCID for editing up to 1,000 concepts, providing a practical approach for fast adjustment and re-deployment of T2I diffusion models in real-world applications.
Abstract:Large-scale pre-training followed by downstream fine-tuning is an effective solution for transferring deep-learning-based models. Since finetuning all possible pre-trained models is computational costly, we aim to predict the transferability performance of these pre-trained models in a computational efficient manner. Different from previous work that seek out suitable models for downstream classification and segmentation tasks, this paper studies the efficient transferability assessment of pre-trained object detectors. To this end, we build up a detector transferability benchmark which contains a large and diverse zoo of pre-trained detectors with various architectures, source datasets and training schemes. Given this zoo, we adopt 7 target datasets from 5 diverse domains as the downstream target tasks for evaluation. Further, we propose to assess classification and regression sub-tasks simultaneously in a unified framework. Additionally, we design a complementary metric for evaluating tasks with varying objects. Experimental results demonstrate that our method outperforms other state-of-the-art approaches in assessing transferability under different target domains while efficiently reducing wall-clock time 32$\times$ and requires a mere 5.2\% memory footprint compared to brute-force fine-tuning of all pre-trained detectors.