University of Science and Technology of China
Abstract:Real-SR endeavors to produce high-resolution images with rich details while mitigating the impact of multiple degradation factors. Although existing methods have achieved impressive achievements in detail recovery, they still fall short when addressing regions with complex gradient arrangements due to the intensity-based linear weighting feature extraction manner. Moreover, the stochastic artifacts introduced by degradation cues during the imaging process in real LR increase the disorder of the overall image details, further complicating the perception of intrinsic gradient arrangement. To address these challenges, we innovatively introduce kernel-wise differential operations within the convolutional kernel and develop several learnable directional gradient convolutions. These convolutions are integrated in parallel with a novel linear weighting mechanism to form an Adaptive Directional Gradient Convolution (DGConv), which adaptively weights and fuses the basic directional gradients to improve the gradient arrangement perception capability for both regular and irregular textures. Coupled with DGConv, we further devise a novel equivalent parameter fusion method for DGConv that maintains its rich representational capabilities while keeping computational costs consistent with a single Vanilla Convolution (VConv), enabling DGConv to improve the performance of existing super-resolution networks without incurring additional computational expenses. To better leverage the superiority of DGConv, we further develop an Adaptive Information Interaction Block (AIIBlock) to adeptly balance the enhancement of texture and contrast while meticulously investigating the interdependencies, culminating in the creation of a DGPNet for Real-SR through simple stacking. Comparative results with 15 SOTA methods across three public datasets underscore the effectiveness and efficiency of our proposed approach.
Abstract:The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the scarcity of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). Building on the achievements of the previous MIPI Workshops held at ECCV 2022 and CVPR 2023, we introduce our third MIPI challenge including three tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Nighttime Flare Removal track on MIPI 2024. In total, 170 participants were successfully registered, and 14 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art performance on Nighttime Flare Removal. More details of this challenge and the link to the dataset can be found at https://mipi-challenge.org/MIPI2024/.
Abstract:Identifying key nodes in social networks plays a crucial role in timely blocking false information. Existing key node identification methods usually consider node influence only from the propagation structure perspective and have insufficient generalization ability to unknown scenarios. In this paper, we propose a novel Multi-perspective Memory Enhanced Network (MMEN) for identifying key nodes in social networks, which mines key nodes from multiple perspectives and utilizes memory networks to store historical information. Specifically, MMEN first constructs two propagation networks from the perspectives of user attributes and propagation structure and updates node feature representations using graph attention networks. Meanwhile, the memory network is employed to store information of similar subgraphs, enhancing the model's generalization performance in unknown scenarios. Finally, MMEN applies adaptive weights to combine the node influence of the two propagation networks to select the ultimate key nodes. Extensive experiments demonstrate that our method significantly outperforms previous methods.
Abstract:Understanding information cascades in networks is a fundamental issue in numerous applications. Current researches often sample cascade information into several independent paths or subgraphs to learn a simple cascade representation. However, these approaches fail to exploit the hierarchical semantic associations between different modalities, limiting their predictive performance. In this work, we propose a novel Hierarchical Information Enhancement Network (HIENet) for cascade prediction. Our approach integrates fundamental cascade sequence, user social graphs, and sub-cascade graph into a unified framework. Specifically, HIENet utilizes DeepWalk to sample cascades information into a series of sequences. It then gathers path information between users to extract the social relationships of propagators. Additionally, we employ a time-stamped graph convolutional network to aggregate sub-cascade graph information effectively. Ultimately, we introduce a Multi-modal Cascade Transformer to powerfully fuse these clues, providing a comprehensive understanding of cascading process. Extensive experiments have demonstrated the effectiveness of the proposed method.
Abstract:The development of Large Vision-Language Models (LVLMs) is striving to catch up with the success of Large Language Models (LLMs), yet it faces more challenges to be resolved. Very recent works enable LVLMs to localize object-level visual contents and ground text to them. Nonetheless, current LVLMs still struggle to precisely understand visual relations due to the lack of relevant data. In this work, we present RelationVLM, a large vision-language model capable of comprehending various levels and types of relations whether across multiple images or within a video. Specifically, we devise a multi-stage relation-aware training scheme and a series of corresponding data configuration strategies to bestow RelationVLM with the capabilities of understanding semantic relations, temporal associations and geometric transforms. Extensive case studies and quantitative evaluations show RelationVLM has strong capability in understanding such relations and emerges impressive in-context capability of reasoning from few-shot examples by comparison. This work fosters the advancements of LVLMs by enabling them to support a wider range of downstream applications toward artificial general intelligence.
Abstract:At present, large multimodal models (LMMs) have exhibited impressive generalization capabilities in understanding and generating visual signals. However, they currently still lack sufficient capability to perceive low-level visual quality akin to human perception. Can LMMs achieve this and show the same degree of generalization in this regard? If so, not only could the versatility of LMMs be further enhanced, but also the challenge of poor cross-dataset performance in the field of visual quality assessment could be addressed. In this paper, we explore this question and provide the answer "Yes!". As the result of this initial exploration, we present VisualCritic, the first LMM for broad-spectrum image subjective quality assessment. VisualCritic can be used across diverse data right out of box, without any requirements of dataset-specific adaptation operations like conventional specialist models. As an instruction-following LMM, VisualCritic enables new capabilities of (1) quantitatively measuring the perceptual quality of given images in terms of their Mean Opinion Score (MOS), noisiness, colorfulness, sharpness, and other numerical indicators, (2) qualitatively evaluating visual quality and providing explainable descriptions, (3) discerning whether a given image is AI-generated or photographic. Extensive experiments demonstrate the efficacy of VisualCritic by comparing it with other open-source LMMs and conventional specialist models over both AI-generated and photographic images.
Abstract:Dynamic Range (DR) is a pivotal characteristic of imaging systems. Current frame-based cameras struggle to achieve high dynamic range imaging due to the conflict between globally uniform exposure and spatially variant scene illumination. In this paper, we propose AsynHDR, a Pixel-Asynchronous HDR imaging system, based on key insights into the challenges in HDR imaging and the unique event-generating mechanism of Dynamic Vision Sensors (DVS). Our proposed AsynHDR system integrates the DVS with a set of LCD panels. The LCD panels modulate the irradiance incident upon the DVS by altering their transparency, thereby triggering the pixel-independent event streams. The HDR image is subsequently decoded from the event streams through our temporal-weighted algorithm. Experiments under standard test platform and several challenging scenes have verified the feasibility of the system in HDR imaging task.
Abstract:Learning 3D human-object interaction relation is pivotal to embodied AI and interaction modeling. Most existing methods approach the goal by learning to predict isolated interaction elements, e.g., human contact, object affordance, and human-object spatial relation, primarily from the perspective of either the human or the object. Which underexploit certain correlations between the interaction counterparts (human and object), and struggle to address the uncertainty in interactions. Actually, objects' functionalities potentially affect humans' interaction intentions, which reveals what the interaction is. Meanwhile, the interacting humans and objects exhibit matching geometric structures, which presents how to interact. In light of this, we propose harnessing these inherent correlations between interaction counterparts to mitigate the uncertainty and jointly anticipate the above interaction elements in 3D space. To achieve this, we present LEMON (LEarning 3D huMan-Object iNteraction relation), a unified model that mines interaction intentions of the counterparts and employs curvatures to guide the extraction of geometric correlations, combining them to anticipate the interaction elements. Besides, the 3D Interaction Relation dataset (3DIR) is collected to serve as the test bed for training and evaluation. Extensive experiments demonstrate the superiority of LEMON over methods estimating each element in isolation.
Abstract:Consistency Models (CMs) have showed a promise in creating visual content efficiently and with high quality. However, the way to add new conditional controls to the pretrained CMs has not been explored. In this technical report, we consider alternative strategies for adding ControlNet-like conditional control to CMs and present three significant findings. 1) ControlNet trained for diffusion models (DMs) can be directly applied to CMs for high-level semantic controls but struggles with low-level detail and realism control. 2) CMs serve as an independent class of generative models, based on which ControlNet can be trained from scratch using Consistency Training proposed by Song et al. 3) A lightweight adapter can be jointly optimized under multiple conditions through Consistency Training, allowing for the swift transfer of DMs-based ControlNet to CMs. We study these three solutions across various conditional controls, including edge, depth, human pose, low-resolution image and masked image with text-to-image latent consistency models.
Abstract:Adverse weather image restoration strives to recover clear images from those affected by various weather types, such as rain, haze, and snow. Each weather type calls for a tailored degradation removal approach due to its unique impact on images. Conversely, content reconstruction can employ a uniform approach, as the underlying image content remains consistent. Although previous techniques can handle multiple weather types within a single network, they neglect the crucial distinction between these two processes, limiting the quality of restored images. This work introduces a novel adverse weather image restoration method, called DDCNet, which decouples the degradation removal and content reconstruction process at the feature level based on their channel statistics. Specifically, we exploit the unique advantages of the Fourier transform in both these two processes: (1) the degradation information is mainly located in the amplitude component of the Fourier domain, and (2) the Fourier domain contains global information. The former facilitates channel-dependent degradation removal operation, allowing the network to tailor responses to various adverse weather types; the latter, by integrating Fourier's global properties into channel-independent content features, enhances network capacity for consistent global content reconstruction. We further augment the degradation removal process with a degradation mapping loss function. Extensive experiments demonstrate our method achieves state-of-the-art performance in multiple adverse weather removal benchmarks.