Abstract:The pre-trained transformer demonstrates remarkable generalization ability in natural image processing. However, directly transferring it to magnetic resonance images faces two key challenges: the inability to adapt to the specificity of medical anatomical structures and the limitations brought about by the privacy and scarcity of medical data. To address these issues, this paper proposes a Self-Supervised Pretrained Transformer (SSPFormer) for MRI images, which effectively learns domain-specific feature representations of medical images by leveraging unlabeled raw imaging data. To tackle the domain gap and data scarcity, we introduce inverse frequency projection masking, which prioritizes the reconstruction of high-frequency anatomical regions to enforce structure-aware representation learning. Simultaneously, to enhance robustness against real-world MRI artifacts, we employ frequency-weighted FFT noise enhancement that injects physiologically realistic noise into the Fourier domain. Together, these strategies enable the model to learn domain-invariant and artifact-robust features directly from raw scans. Through extensive experiments on segmentation, super-resolution, and denoising tasks, the proposed SSPFormer achieves state-of-the-art performance, fully verifying its ability to capture fine-grained MRI image fidelity and adapt to clinical application requirements.




Abstract:Accurate prediction of traffic flow parameters and real time identification of congestion states are essential for the efficient operation of intelligent transportation systems. This paper proposes a Periodic Pattern Transformer Network (PPTNet) for traffic flow prediction, integrating periodic pattern extraction with the Transformer architecture, coupled with a fuzzy inference method for real-time congestion identification. Firstly, a high-precision traffic flow dataset (Traffic Flow Dataset for China's Congested Highways and Expressways, TF4CHE) suitable for congested highway scenarios in China is constructed based on drone aerial imagery data. Subsequently, the proposed PPTNet employs Fast Fourier Transform to capture multi-scale periodic patterns and utilizes two-dimensional Inception convolutions to efficiently extract intra and inter periodic features. A Transformer decoder dynamically models temporal dependencies, enabling accurate predictions of traffic density and speed. Finally, congestion probabilities are calculated in real-time using the predicted outcomes via a Mamdani fuzzy inference-based congestion identification module. Experimental results demonstrate that the proposed PPTNet significantly outperforms mainstream traffic prediction methods in prediction accuracy, and the congestion identification module effectively identifies real-time road congestion states, verifying the superiority and practicality of the proposed method in real-world traffic scenarios. Project page: https://github.com/ADSafetyJointLab/PPTNet.
Abstract:With the rise of Large Language Models (LLMs), the novel metric "Brainscore" emerged as a means to evaluate the functional similarity between LLMs and human brain/neural systems. Our efforts were dedicated to mining the meaning of the novel score by constructing topological features derived from both human fMRI data involving 190 subjects, and 39 LLMs plus their untrained counterparts. Subsequently, we trained 36 Linear Regression Models and conducted thorough statistical analyses to discern reliable and valid features from our constructed ones. Our findings reveal distinctive feature combinations conducive to interpreting existing brainscores across various brain regions of interest (ROIs) and hemispheres, thereby significantly contributing to advancing interpretable machine learning (iML) studies. The study is enriched by our further discussions and analyses concerning existing brainscores. To our knowledge, this study represents the first attempt to comprehend the novel metric brainscore within this interdisciplinary domain.