Abstract:Large language models (LLMs) demonstrate robust capabilities across diverse research domains. However, their performance in universal information extraction (UIE) remains insufficient, especially when tackling structured output scenarios that involve complex schema descriptions and require multi-step reasoning. While existing approaches enhance the performance of LLMs through in-context learning and instruction tuning, significant limitations nonetheless persist. To enhance the model's generalization ability, we propose integrating reinforcement learning (RL) with multi-perspective reasoning for information extraction (IE) tasks. Our work transitions LLMs from passive extractors to active reasoners, enabling them to understand not only what to extract but also how to reason. Experiments conducted on multiple IE benchmarks demonstrate that MR-UIE consistently elevates extraction accuracy across domains and surpasses state-of-the-art methods on several datasets. Furthermore, incorporating multi-perspective reasoning into RL notably enhances generalization in complex IE tasks, underscoring the critical role of reasoning in challenging scenarios.
Abstract:Extensive research has been conducted to explore the capabilities of large language models (LLMs) in table reasoning. However, the essential task of transforming tables information into reports remains a significant challenge for industrial applications. This task is plagued by two critical issues: 1) the complexity and diversity of tables lead to suboptimal reasoning outcomes; and 2) existing table benchmarks lack the capacity to adequately assess the practical application of this task. To fill this gap, we propose the table-to-report task and construct a bilingual benchmark named T2R-bench, where the key information flow from the tables to the reports for this task. The benchmark comprises 457 industrial tables, all derived from real-world scenarios and encompassing 19 industry domains as well as 4 types of industrial tables. Furthermore, we propose an evaluation criteria to fairly measure the quality of report generation. The experiments on 25 widely-used LLMs reveal that even state-of-the-art models like Deepseek-R1 only achieves performance with 62.71 overall score, indicating that LLMs still have room for improvement on T2R-bench. Source code and data will be available after acceptance.
Abstract:We introduce the latest series of TeleChat models: \textbf{TeleChat2}, \textbf{TeleChat2.5}, and \textbf{T1}, offering a significant upgrade over their predecessor, TeleChat. Despite minimal changes to the model architecture, the new series achieves substantial performance gains through enhanced training strategies in both pre-training and post-training stages. The series begins with \textbf{TeleChat2}, which undergoes pretraining on 10 trillion high-quality and diverse tokens. This is followed by Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) to further enhance its capabilities. \textbf{TeleChat2.5} and \textbf{T1} expand the pipeline by incorporating a continual pretraining phase with domain-specific datasets, combined with reinforcement learning (RL) to improve performance in code generation and mathematical reasoning tasks. The \textbf{T1} variant is designed for complex reasoning, supporting long Chain-of-Thought (CoT) reasoning and demonstrating substantial improvements in mathematics and coding. In contrast, \textbf{TeleChat2.5} prioritizes speed, delivering rapid inference. Both flagship models of \textbf{T1} and \textbf{TeleChat2.5} are dense Transformer-based architectures with 115B parameters, showcasing significant advancements in reasoning and general task performance compared to the original TeleChat. Notably, \textbf{T1-115B} outperform proprietary models such as OpenAI's o1-mini and GPT-4o. We publicly release \textbf{TeleChat2}, \textbf{TeleChat2.5} and \textbf{T1}, including post-trained versions with 35B and 115B parameters, to empower developers and researchers with state-of-the-art language models tailored for diverse applications.
Abstract:Spoken language models (SLMs) have seen rapid progress in recent years, along with the development of numerous benchmarks for evaluating their performance. However, most existing benchmarks primarily focus on evaluating whether SLMs can perform complex tasks comparable to those tackled by large language models (LLMs), often failing to align with how users naturally interact in real-world conversational scenarios. In this paper, we propose TELEVAL, a dynamic benchmark specifically designed to evaluate SLMs' effectiveness as conversational agents in realistic Chinese interactive settings. TELEVAL defines three evaluation dimensions: Explicit Semantics, Paralinguistic and Implicit Semantics, and System Abilities. It adopts a dialogue format consistent with real-world usage and evaluates text and audio outputs separately. TELEVAL particularly focuses on the model's ability to extract implicit cues from user speech and respond appropriately without additional instructions. Our experiments demonstrate that despite recent progress, existing SLMs still have considerable room for improvement in natural conversational tasks. We hope that TELEVAL can serve as a user-centered evaluation framework that directly reflects the user experience and contributes to the development of more capable dialogue-oriented SLMs.
Abstract:Human communication involves more than explicit semantics, with implicit signals and contextual cues playing a critical role in shaping meaning. However, modern speech technologies, such as Automatic Speech Recognition (ASR) and Text-to-Speech (TTS) often fail to capture these beyond-semantic dimensions. To better characterize and benchmark the progression of speech intelligence, we introduce Spoken Interaction System Capability Levels (L1-L5), a hierarchical framework illustrated the evolution of spoken dialogue systems from basic command recognition to human-like social interaction. To support these advanced capabilities, we propose Beyond-Semantic Speech (BoSS), which refers to the set of information in speech communication that encompasses but transcends explicit semantics. It conveys emotions, contexts, and modifies or extends meanings through multidimensional features such as affective cues, contextual dynamics, and implicit semantics, thereby enhancing the understanding of communicative intentions and scenarios. We present a formalized framework for BoSS, leveraging cognitive relevance theories and machine learning models to analyze temporal and contextual speech dynamics. We evaluate BoSS-related attributes across five different dimensions, reveals that current spoken language models (SLMs) are hard to fully interpret beyond-semantic signals. These findings highlight the need for advancing BoSS research to enable richer, more context-aware human-machine communication.
Abstract:Functional ANOVA (FANOVA) is a widely used variance-based sensitivity analysis tool. However, studies on functional-output FANOVA remain relatively scarce, especially for black-box computer experiments, which often involve complex and nonlinear functional-output relationships with unknown data distribution. Conventional approaches often rely on predefined basis functions or parametric structures that lack the flexibility to capture complex nonlinear relationships. Additionally, strong assumptions about the underlying data distributions further limit their ability to achieve a data-driven orthogonal effect decomposition. To address these challenges, this study proposes a functional-output orthogonal additive Gaussian process (FOAGP) to efficiently perform the data-driven orthogonal effect decomposition. By enforcing a conditional orthogonality constraint on the separable prior process, the proposed functional-output orthogonal additive kernel enables data-driven orthogonality without requiring prior distributional assumptions. The FOAGP framework also provides analytical formulations for local Sobol' indices and expected conditional variance sensitivity indices, enabling comprehensive sensitivity analysis by capturing both global and local effect significance. Validation through two simulation studies and a real case study on fuselage shape control confirms the model's effectiveness in orthogonal effect decomposition and variance decomposition, demonstrating its practical value in engineering applications.
Abstract:Large-scale training corpora have significantly improved the performance of ASR models. Unfortunately, due to the relative scarcity of data, Chinese accents and dialects remain a challenge for most ASR models. Recent advancements in self-supervised learning have shown that self-supervised pre- training, combined with large language models (LLM), can effectively enhance ASR performance in low-resource scenarios. We aim to investigate the effectiveness of this paradigm for Chinese dialects. Specifically, we pre-train a Data2vec2 model on 300,000 hours of unlabeled dialect and accented speech data and do alignment training on a supervised dataset of 40,000 hours. Then, we systematically examine the impact of various projectors and LLMs on Mandarin, dialect, and accented speech recognition performance under this paradigm. Our method achieved SOTA results on multiple dialect datasets, including Kespeech. We will open-source our work to promote reproducible research
Abstract:In the era of rapid generative AI development, interactions between humans and large language models face significant misusing risks. Previous research has primarily focused on black-box scenarios using human-guided prompts and white-box scenarios leveraging gradient-based LLM generation methods, neglecting the possibility that LLMs can act not only as victim models, but also as attacker models to harm other models. We proposes a novel jailbreaking method inspired by the Chain-of-Thought mechanism, where the attacker model uses mission transfer to conceal harmful user intent in dialogue and generates chained narrative lures to stimulate the reasoning capabilities of victim models, leading to successful jailbreaking. To enhance the attack success rate, we introduce a helper model that performs random narrative optimization on the narrative lures during multi-turn dialogues while ensuring alignment with the original intent, enabling the optimized lures to bypass the safety barriers of victim models effectively. Our experiments reveal that models with weaker safety mechanisms exhibit stronger attack capabilities, demonstrating that models can not only be exploited, but also help harm others. By incorporating toxicity scores, we employ third-party models to evaluate the harmfulness of victim models' responses to jailbreaking attempts. The study shows that using refusal keywords as an evaluation metric for attack success rates is significantly flawed because it does not assess whether the responses guide harmful questions, while toxicity scores measure the harm of generated content with more precision and its alignment with harmful questions. Our approach demonstrates outstanding performance, uncovering latent vulnerabilities in LLMs and providing data-driven feedback to optimize LLM safety mechanisms. We also discuss two defensive strategies to offer guidance on improving defense mechanisms.
Abstract:Tables present unique challenges for language models due to their structured row-column interactions, necessitating specialized approaches for effective comprehension. While large language models (LLMs) have demonstrated potential in table reasoning through prompting and techniques like chain-of-thought (CoT) and program-of-thought (PoT), optimizing their performance for table question answering remains underexplored. In this paper, we introduce region-based Table-R1, a novel reinforcement learning approach that enhances LLM table understanding by integrating region evidence into reasoning steps. Our method employs Region-Enhanced Supervised Fine-Tuning (RE-SFT) to guide models in identifying relevant table regions before generating answers, incorporating textual, symbolic, and program-based reasoning. Additionally, Table-Aware Group Relative Policy Optimization (TARPO) introduces a mixed reward system to dynamically balance region accuracy and answer correctness, with decaying region rewards and consistency penalties to align reasoning steps. Experiments show that Table-R1 achieves an average performance improvement of 14.36 points across multiple base models on three benchmark datasets, even outperforming baseline models with ten times the parameters, while TARPO reduces response token consumption by 67.5% compared to GRPO, significantly advancing LLM capabilities in efficient tabular reasoning.
Abstract:Unsupervised visible-infrared person re-identification (UVI-ReID) aims to retrieve pedestrian images across different modalities without costly annotations, but faces challenges due to the modality gap and lack of supervision. Existing methods often adopt self-training with clustering-generated pseudo-labels but implicitly assume these labels are always correct. In practice, however, this assumption fails due to inevitable pseudo-label noise, which hinders model learning. To address this, we introduce a new learning paradigm that explicitly considers Pseudo-Label Noise (PLN), characterized by three key challenges: noise overfitting, error accumulation, and noisy cluster correspondence. To this end, we propose a novel Robust Duality Learning framework (RoDE) for UVI-ReID to mitigate the effects of noisy pseudo-labels. First, to combat noise overfitting, a Robust Adaptive Learning mechanism (RAL) is proposed to dynamically emphasize clean samples while down-weighting noisy ones. Second, to alleviate error accumulation-where the model reinforces its own mistakes-RoDE employs dual distinct models that are alternately trained using pseudo-labels from each other, encouraging diversity and preventing collapse. However, this dual-model strategy introduces misalignment between clusters across models and modalities, creating noisy cluster correspondence. To resolve this, we introduce Cluster Consistency Matching (CCM), which aligns clusters across models and modalities by measuring cross-cluster similarity. Extensive experiments on three benchmarks demonstrate the effectiveness of RoDE.