Abstract:As autonomous driving technology continues to advance, end-to-end models have attracted considerable attention owing to their superior generalisation capability. Nevertheless, such learning-based systems entail numerous safety risks throughout development and on-road deployment, and existing safety-analysis methods struggle to identify these risks comprehensively. To address this gap, we propose the Unified System Theoretic Process Analysis (UniSTPA) framework, which extends the scope of STPA from the operational phase to the entire lifecycle of an end-to-end autonomous driving system, including information gathering, data preparation, closed loop training, verification, and deployment. UniSTPA performs hazard analysis not only at the component level but also within the model's internal layers, thereby enabling fine-grained assessment of inter and intra module interactions. Using a highway Navigate on Autopilot function as a case study, UniSTPA uncovers multi-stage hazards overlooked by conventional approaches including scene design defects, sensor fusion biases, and internal model flaws, through multi-level causal analysis, traces these hazards to deeper issues such as data quality, network architecture, and optimisation objectives. The analysis result are used to construct a safety monitoring and safety response mechanism that supports continuous improvement from hazard identification to system optimisation. The proposed framework thus offers both theoretical and practical guidance for the safe development and deployment of end-to-end autonomous driving systems.
Abstract:Accurate prediction of traffic flow parameters and real time identification of congestion states are essential for the efficient operation of intelligent transportation systems. This paper proposes a Periodic Pattern Transformer Network (PPTNet) for traffic flow prediction, integrating periodic pattern extraction with the Transformer architecture, coupled with a fuzzy inference method for real-time congestion identification. Firstly, a high-precision traffic flow dataset (Traffic Flow Dataset for China's Congested Highways and Expressways, TF4CHE) suitable for congested highway scenarios in China is constructed based on drone aerial imagery data. Subsequently, the proposed PPTNet employs Fast Fourier Transform to capture multi-scale periodic patterns and utilizes two-dimensional Inception convolutions to efficiently extract intra and inter periodic features. A Transformer decoder dynamically models temporal dependencies, enabling accurate predictions of traffic density and speed. Finally, congestion probabilities are calculated in real-time using the predicted outcomes via a Mamdani fuzzy inference-based congestion identification module. Experimental results demonstrate that the proposed PPTNet significantly outperforms mainstream traffic prediction methods in prediction accuracy, and the congestion identification module effectively identifies real-time road congestion states, verifying the superiority and practicality of the proposed method in real-world traffic scenarios. Project page: https://github.com/ADSafetyJointLab/PPTNet.