Abstract:As large language models (LLMs) are increasingly used for ideation and scientific discovery, it is important to evaluate their ability to generate novel output. Prior work evaluates novelty as the originality with respect to training data, but original outputs can be low quality. In contrast, non-expert judges may favor high-quality but memorized outputs, limiting the reliability of human preference as a metric. We propose a new novelty metric for LLM generations that balances originality and quality -- the harmonic mean of the fraction of \ngrams unseen during training and a task-specific quality score. We evaluate the novelty of generations from two families of open-data models (OLMo and Pythia) on three creative tasks: story completion, poetry writing, and creative tool use. We find that LLM generated text is less novel than human written text. To elicit more novel outputs, we experiment with various inference-time methods, which reveals a trade-off between originality and quality. While these methods can boost novelty, they do so by increasing originality at the expense of quality. In contrast, increasing model size or applying post-training reliably shifts the Pareto frontier, highlighting that starting with a stronger base model is a more effective way to improve novelty.
Abstract:Forecasts of future events are essential inputs into informed decision-making. Machine learning (ML) systems have the potential to deliver forecasts at scale, but there is no framework for evaluating the accuracy of ML systems on a standardized set of forecasting questions. To address this gap, we introduce ForecastBench: a dynamic benchmark that evaluates the accuracy of ML systems on an automatically generated and regularly updated set of 1,000 forecasting questions. To avoid any possibility of data leakage, ForecastBench is comprised solely of questions about future events that have no known answer at the time of submission. We quantify the ability of current ML systems by collecting forecasts from expert (human) forecasters, the general public, and LLMs on a random subset of questions from the benchmark (N = 200). While LLMs have achieved super-human performance on many benchmarks, they perform less well here: expert forecasters outperform the top-performing LLM (p-values <= 0.01). We display system and human scores in a public leaderboard at www.forecastbench.org.
Abstract:Forecasting future events is important for policy and decision making. In this work, we study whether language models (LMs) can forecast at the level of competitive human forecasters. Towards this goal, we develop a retrieval-augmented LM system designed to automatically search for relevant information, generate forecasts, and aggregate predictions. To facilitate our study, we collect a large dataset of questions from competitive forecasting platforms. Under a test set published after the knowledge cut-offs of our LMs, we evaluate the end-to-end performance of our system against the aggregates of human forecasts. On average, the system nears the crowd aggregate of competitive forecasters, and in some settings surpasses it. Our work suggests that using LMs to forecast the future could provide accurate predictions at scale and help to inform institutional decision making.