Minhui
Abstract:Machine unlearning, a process enabling pre-trained models to remove the influence of specific training samples, has attracted significant attention in recent years. Although extensive research has focused on developing efficient machine unlearning strategies, we argue that these methods mainly aim at removing samples rather than removing samples' influence on the model, thus overlooking the fundamental definition of machine unlearning. In this paper, we first conduct a comprehensive study to evaluate the effectiveness of existing unlearning schemes when the training dataset includes many samples similar to those targeted for unlearning. Specifically, we evaluate: Do existing unlearning methods truly adhere to the original definition of machine unlearning and effectively eliminate all influence of target samples when similar samples are present in the training dataset? Our extensive experiments, conducted on four carefully constructed datasets with thorough analysis, reveal a notable gap between the expected and actual performance of most existing unlearning methods for image and language models, even for the retraining-from-scratch baseline. Additionally, we also explore potential solutions to enhance current unlearning approaches.




Abstract:Quantum machine learning (QML) promises significant computational advantages, yet models trained on sensitive data risk memorizing individual records, creating serious privacy vulnerabilities. While Quantum Differential Privacy (QDP) mechanisms provide theoretical worst-case guarantees, they critically lack empirical verification tools for deployed models. We introduce the first black-box privacy auditing framework for QML based on Lifted Quantum Differential Privacy, leveraging quantum canaries (strategically offset-encoded quantum states) to detect memorization and precisely quantify privacy leakage during training. Our framework establishes a rigorous mathematical connection between canary offset and trace distance bounds, deriving empirical lower bounds on privacy budget consumption that bridge the critical gap between theoretical guarantees and practical privacy verification. Comprehensive evaluations across both simulated and physical quantum hardware demonstrate our framework's effectiveness in measuring actual privacy loss in QML models, enabling robust privacy verification in QML systems.




Abstract:Developing Medical AI relies on large datasets and easily suffers from data scarcity. Generative data augmentation (GDA) using AI generative models offers a solution to synthesize realistic medical images. However, the bias in GDA is often underestimated in medical domains, with concerns about the risk of introducing detrimental features generated by AI and harming downstream tasks. This paper identifies the frequency misalignment between real and synthesized images as one of the key factors underlying unreliable GDA and proposes the Frequency Recalibration (FreRec) method to reduce the frequency distributional discrepancy and thus improve GDA. FreRec involves (1) Statistical High-frequency Replacement (SHR) to roughly align high-frequency components and (2) Reconstructive High-frequency Mapping (RHM) to enhance image quality and reconstruct high-frequency details. Extensive experiments were conducted in various medical datasets, including brain MRIs, chest X-rays, and fundus images. The results show that FreRec significantly improves downstream medical image classification performance compared to uncalibrated AI-synthesized samples. FreRec is a standalone post-processing step that is compatible with any generative model and can integrate seamlessly with common medical GDA pipelines.
Abstract:With increasing concerns about privacy attacks and potential sensitive information leakage, researchers have actively explored methods to efficiently remove sensitive training data and reduce privacy risks in graph neural network (GNN) models. Node unlearning has emerged as a promising technique for protecting the privacy of sensitive nodes by efficiently removing specific training node information from GNN models. However, existing node unlearning methods either impose restrictions on the GNN structure or do not effectively utilize the graph topology for node unlearning. Some methods even compromise the graph's topology, making it challenging to achieve a satisfactory performance-complexity trade-off. To address these issues and achieve efficient unlearning for training node removal in GNNs, we propose three novel node unlearning methods: Class-based Label Replacement, Topology-guided Neighbor Mean Posterior Probability, and Class-consistent Neighbor Node Filtering. Among these methods, Topology-guided Neighbor Mean Posterior Probability and Class-consistent Neighbor Node Filtering effectively leverage the topological features of the graph, resulting in more effective node unlearning. To validate the superiority of our proposed methods in node unlearning, we conducted experiments on three benchmark datasets. The evaluation criteria included model utility, unlearning utility, and unlearning efficiency. The experimental results demonstrate the utility and efficiency of the proposed methods and illustrate their superiority compared to state-of-the-art node unlearning methods. Overall, the proposed methods efficiently remove sensitive training nodes and protect the privacy information of sensitive nodes in GNNs. The findings contribute to enhancing the privacy and security of GNN models and provide valuable insights into the field of node unlearning.




Abstract:In Large Language Models, Retrieval-Augmented Generation (RAG) systems can significantly enhance the performance of large language models by integrating external knowledge. However, RAG also introduces new security risks. Existing research focuses mainly on how poisoning attacks in RAG systems affect model output quality, overlooking their potential to amplify model biases. For example, when querying about domestic violence victims, a compromised RAG system might preferentially retrieve documents depicting women as victims, causing the model to generate outputs that perpetuate gender stereotypes even when the original query is gender neutral. To show the impact of the bias, this paper proposes a Bias Retrieval and Reward Attack (BRRA) framework, which systematically investigates attack pathways that amplify language model biases through a RAG system manipulation. We design an adversarial document generation method based on multi-objective reward functions, employ subspace projection techniques to manipulate retrieval results, and construct a cyclic feedback mechanism for continuous bias amplification. Experiments on multiple mainstream large language models demonstrate that BRRA attacks can significantly enhance model biases in dimensions. In addition, we explore a dual stage defense mechanism to effectively mitigate the impacts of the attack. This study reveals that poisoning attacks in RAG systems directly amplify model output biases and clarifies the relationship between RAG system security and model fairness. This novel potential attack indicates that we need to keep an eye on the fairness issues of the RAG system.
Abstract:Community partitioning is crucial in network analysis, with modularity optimization being the prevailing technique. However, traditional modularity-based methods often overlook fairness, a critical aspect in real-world applications. To address this, we introduce protected group networks and propose a novel fairness-modularity metric. This metric extends traditional modularity by explicitly incorporating fairness, and we prove that minimizing it yields naturally fair partitions for protected groups while maintaining theoretical soundness. We develop a general optimization framework for fairness partitioning and design the efficient Fair Fast Newman (FairFN) algorithm, enhancing the Fast Newman (FN) method to optimize both modularity and fairness. Experiments show FairFN achieves significantly improved fairness and high-quality partitions compared to state-of-the-art methods, especially on unbalanced datasets.
Abstract:In the era of rapid generative AI development, interactions between humans and large language models face significant misusing risks. Previous research has primarily focused on black-box scenarios using human-guided prompts and white-box scenarios leveraging gradient-based LLM generation methods, neglecting the possibility that LLMs can act not only as victim models, but also as attacker models to harm other models. We proposes a novel jailbreaking method inspired by the Chain-of-Thought mechanism, where the attacker model uses mission transfer to conceal harmful user intent in dialogue and generates chained narrative lures to stimulate the reasoning capabilities of victim models, leading to successful jailbreaking. To enhance the attack success rate, we introduce a helper model that performs random narrative optimization on the narrative lures during multi-turn dialogues while ensuring alignment with the original intent, enabling the optimized lures to bypass the safety barriers of victim models effectively. Our experiments reveal that models with weaker safety mechanisms exhibit stronger attack capabilities, demonstrating that models can not only be exploited, but also help harm others. By incorporating toxicity scores, we employ third-party models to evaluate the harmfulness of victim models' responses to jailbreaking attempts. The study shows that using refusal keywords as an evaluation metric for attack success rates is significantly flawed because it does not assess whether the responses guide harmful questions, while toxicity scores measure the harm of generated content with more precision and its alignment with harmful questions. Our approach demonstrates outstanding performance, uncovering latent vulnerabilities in LLMs and providing data-driven feedback to optimize LLM safety mechanisms. We also discuss two defensive strategies to offer guidance on improving defense mechanisms.




Abstract:Large-scale text-to-image (T2I) diffusion models have revolutionized image generation, enabling the synthesis of highly detailed visuals from textual descriptions. However, these models may inadvertently generate inappropriate content, such as copyrighted works or offensive images. While existing methods attempt to eliminate specific unwanted concepts, they often fail to ensure complete removal, allowing the concept to reappear in subtle forms. For instance, a model may successfully avoid generating images in Van Gogh's style when explicitly prompted with 'Van Gogh', yet still reproduce his signature artwork when given the prompt 'Starry Night'. In this paper, we propose SAFER, a novel and efficient approach for thoroughly removing target concepts from diffusion models. At a high level, SAFER is inspired by the observed low-dimensional structure of the text embedding space. The method first identifies a concept-specific subspace $S_c$ associated with the target concept c. It then projects the prompt embeddings onto the complementary subspace of $S_c$, effectively erasing the concept from the generated images. Since concepts can be abstract and difficult to fully capture using natural language alone, we employ textual inversion to learn an optimized embedding of the target concept from a reference image. This enables more precise subspace estimation and enhances removal performance. Furthermore, we introduce a subspace expansion strategy to ensure comprehensive and robust concept erasure. Extensive experiments demonstrate that SAFER consistently and effectively erases unwanted concepts from diffusion models while preserving generation quality.
Abstract:While in-processing fairness approaches show promise in mitigating biased predictions, their potential impact on privacy leakage remains under-explored. We aim to address this gap by assessing the privacy risks of fairness-enhanced binary classifiers via membership inference attacks (MIAs) and attribute inference attacks (AIAs). Surprisingly, our results reveal that enhancing fairness does not necessarily lead to privacy compromises. For example, these fairness interventions exhibit increased resilience against MIAs and AIAs. This is because fairness interventions tend to remove sensitive information among extracted features and reduce confidence scores for the majority of training data for fairer predictions. However, during the evaluations, we uncover a potential threat mechanism that exploits prediction discrepancies between fair and biased models, leading to advanced attack results for both MIAs and AIAs. This mechanism reveals potent vulnerabilities of fair models and poses significant privacy risks of current fairness methods. Extensive experiments across multiple datasets, attack methods, and representative fairness approaches confirm our findings and demonstrate the efficacy of the uncovered mechanism. Our study exposes the under-explored privacy threats in fairness studies, advocating for thorough evaluations of potential security vulnerabilities before model deployments.




Abstract:Generative AI technology has become increasingly integrated into our daily lives, offering powerful capabilities to enhance productivity. However, these same capabilities can be exploited by adversaries for malicious purposes. While existing research on adversarial applications of generative AI predominantly focuses on cyberattacks, less attention has been given to attacks targeting deep learning models. In this paper, we introduce the use of generative AI for facilitating model-related attacks, including model extraction, membership inference, and model inversion. Our study reveals that adversaries can launch a variety of model-related attacks against both image and text models in a data-free and black-box manner, achieving comparable performance to baseline methods that have access to the target models' training data and parameters in a white-box manner. This research serves as an important early warning to the community about the potential risks associated with generative AI-powered attacks on deep learning models.