Recently Transformer and Convolution neural network (CNN) based models have shown promising results in EEG signal processing. Transformer models can capture the global dependencies in EEG signals through a self-attention mechanism, while CNN models can capture local features such as sawtooth waves. In this work, we propose an end-to-end neural epilepsy detection model, EENED, that combines CNN and Transformer. Specifically, by introducing the convolution module into the Transformer encoder, EENED can learn the time-dependent relationship of the patient's EEG signal features and notice local EEG abnormal mutations closely related to epilepsy, such as the appearance of spikes and the sprinkling of sharp and slow waves. Our proposed framework combines the ability of Transformer and CNN to capture different scale features of EEG signals and holds promise for improving the accuracy and reliability of epilepsy detection. Our source code will be released soon on GitHub.
Sleep staging is critical for assessing sleep quality and diagnosing sleep disorders. However, capturing both the spatial and temporal relationships within electroencephalogram (EEG) signals during different sleep stages remains challenging. In this paper, we propose a novel framework called the Hybrid Attention EEG Sleep Staging (HASS) Framework. Specifically, we propose a well-designed spatio-temporal attention mechanism to adaptively assign weights to inter-channels and intra-channel EEG segments based on the spatio-temporal relationship of the brain during different sleep stages. Experiment results on the MASS and ISRUC datasets demonstrate that HASS can significantly improve typical sleep staging networks. Our proposed framework alleviates the difficulties of capturing the spatial-temporal relationship of EEG signals during sleep staging and holds promise for improving the accuracy and reliability of sleep assessment in both clinical and research settings.
Drowsy driving has a crucial influence on driving safety, creating an urgent demand for driver drowsiness detection. Electroencephalogram (EEG) signal can accurately reflect the mental fatigue state and thus has been widely studied in drowsiness monitoring. However, the raw EEG data is inherently noisy and redundant, which is neglected by existing works that just use single-channel EEG data or full-head channel EEG data for model training, resulting in limited performance of driver drowsiness detection. In this paper, we are the first to propose an Interpretability-guided Channel Selection (ICS) framework for the driver drowsiness detection task. Specifically, we design a two-stage training strategy to progressively select the key contributing channels with the guidance of interpretability. We first train a teacher network in the first stage using full-head channel EEG data. Then we apply the class activation mapping (CAM) to the trained teacher model to highlight the high-contributing EEG channels and further propose a channel voting scheme to select the top N contributing EEG channels. Finally, we train a student network with the selected channels of EEG data in the second stage for driver drowsiness detection. Experiments are designed on a public dataset, and the results demonstrate that our method is highly applicable and can significantly improve the performance of cross-subject driver drowsiness detection.
The close coupling of artificial intelligence (AI) and electroencephalography (EEG) has substantially advanced human-computer interaction (HCI) technologies in the AI era. Different from traditional EEG systems, the interpretability and robustness of AI-based EEG systems are becoming particularly crucial. The interpretability clarifies the inner working mechanisms of AI models and thus can gain the trust of users. The robustness reflects the AI's reliability against attacks and perturbations, which is essential for sensitive and fragile EEG signals. Thus the interpretability and robustness of AI in EEG systems have attracted increasing attention, and their research has achieved great progress recently. However, there is still no survey covering recent advances in this field. In this paper, we present the first comprehensive survey and summarize the interpretable and robust AI techniques for EEG systems. Specifically, we first propose a taxonomy of interpretability by characterizing it into three types: backpropagation, perturbation, and inherently interpretable methods. Then we classify the robustness mechanisms into four classes: noise and artifacts, human variability, data acquisition instability, and adversarial attacks. Finally, we identify several critical and unresolved challenges for interpretable and robust AI in EEG systems and further discuss their future directions.