Abstract:Electroencephalography (EEG) provides real-time insights into brain activity and is widely used in neuroscience. However, variations in channel configurations, sequence lengths, and task objectives limit the transferability of traditional task-specific models. Although recent EEG foundation models (EFMs) aim to learn generalizable representations, they struggle with limited heterogeneous representation capacity and inefficiency in capturing multi-scale brain dependencies. To address these challenges, we propose CodeBrain, an efficient EFM structurally aligned with brain organization, trained in two stages. (1) We introduce a TFDual-Tokenizer that independently tokenizes heterogeneous temporal and frequency components, enabling a quadratic expansion of the discrete representation space. This also offers a degree of interpretability through cross-domain token analysis. (2) We propose the EEGSSM, which combines a structured global convolution architecture and a sliding window attention mechanism to jointly model sparse long-range and local dependencies. Unlike fully connected Transformer models, EEGSSM better reflects the brain's small-world topology and efficiently captures EEG's inherent multi-scale structure. EEGSSM is trained with a masked self-supervised learning objective to predict token indices obtained in TFDual-Tokenizer. Comprehensive experiments on 10 public EEG datasets demonstrate the generalizability of CodeBrain with linear probing. By offering biologically informed and interpretable EEG modeling, CodeBrain lays the foundation for future neuroscience research. Both code and pretraining weights will be released in the future version.
Abstract:Vision-Language-Action (VLA) models for autonomous driving show promise but falter in unstructured corner case scenarios, largely due to a scarcity of targeted benchmarks. To address this, we introduce Impromptu VLA. Our core contribution is the Impromptu VLA Dataset: over 80,000 meticulously curated video clips, distilled from over 2M source clips sourced from 8 open-source large-scale datasets. This dataset is built upon our novel taxonomy of four challenging unstructured categories and features rich, planning-oriented question-answering annotations and action trajectories. Crucially, experiments demonstrate that VLAs trained with our dataset achieve substantial performance gains on established benchmarks--improving closed-loop NeuroNCAP scores and collision rates, and reaching near state-of-the-art L2 accuracy in open-loop nuScenes trajectory prediction. Furthermore, our Q&A suite serves as an effective diagnostic, revealing clear VLM improvements in perception, prediction, and planning. Our code, data and models are available at https://github.com/ahydchh/Impromptu-VLA.
Abstract:We introduces X-ARES (eXtensive Audio Representation and Evaluation Suite), a novel open-source benchmark designed to systematically assess audio encoder performance across diverse domains. By encompassing tasks spanning speech, environmental sounds, and music, X-ARES provides two evaluation approaches for evaluating audio representations: linear fine-tuning and unparameterized evaluation. The framework includes 22 distinct tasks that cover essential aspects of audio processing, from speech recognition and emotion detection to sound event classification and music genre identification. Our extensive evaluation of state-of-the-art audio encoders reveals significant performance variations across different tasks and domains, highlighting the complexity of general audio representation learning.
Abstract:With the rapid advancements in diffusion models and 3D generation techniques, dynamic 3D content generation has become a crucial research area. However, achieving high-fidelity 4D (dynamic 3D) generation with strong spatial-temporal consistency remains a challenging task. Inspired by recent findings that pretrained diffusion features capture rich correspondences, we propose FB-4D, a novel 4D generation framework that integrates a Feature Bank mechanism to enhance both spatial and temporal consistency in generated frames. In FB-4D, we store features extracted from previous frames and fuse them into the process of generating subsequent frames, ensuring consistent characteristics across both time and multiple views. To ensure a compact representation, the Feature Bank is updated by a proposed dynamic merging mechanism. Leveraging this Feature Bank, we demonstrate for the first time that generating additional reference sequences through multiple autoregressive iterations can continuously improve generation performance. Experimental results show that FB-4D significantly outperforms existing methods in terms of rendering quality, spatial-temporal consistency, and robustness. It surpasses all multi-view generation tuning-free approaches by a large margin and achieves performance on par with training-based methods.
Abstract:The accurate diagnosis of Alzheimer's disease (AD) and prognosis of mild cognitive impairment (MCI) conversion are crucial for early intervention. However, existing multimodal methods face several challenges, from the heterogeneity of input data, to underexplored modality interactions, missing data due to patient dropouts, and limited data caused by the time-consuming and costly data collection process. In this paper, we propose a novel Prompted Hypergraph Neural Network (PHGNN) framework that addresses these limitations by integrating hypergraph based learning with prompt learning. Hypergraphs capture higher-order relationships between different modalities, while our prompt learning approach for hypergraphs, adapted from NLP, enables efficient training with limited data. Our model is validated through extensive experiments on the ADNI dataset, outperforming SOTA methods in both AD diagnosis and the prediction of MCI conversion.
Abstract:Online Handwritten Text Recognition (OLHTR) has gained considerable attention for its diverse range of applications. Current approaches usually treat OLHTR as a sequence recognition task, employing either a single trajectory or image encoder, or multi-stream encoders, combined with a CTC or attention-based recognition decoder. However, these approaches face several drawbacks: 1) single encoders typically focus on either local trajectories or visual regions, lacking the ability to dynamically capture relevant global features in challenging cases; 2) multi-stream encoders, while more comprehensive, suffer from complex structures and increased inference costs. To tackle this, we propose a Collaborative learning-based OLHTR framework, called Col-OLHTR, that learns multimodal features during training while maintaining a single-stream inference process. Col-OLHTR consists of a trajectory encoder, a Point-to-Spatial Alignment (P2SA) module, and an attention-based decoder. The P2SA module is designed to learn image-level spatial features through trajectory-encoded features and 2D rotary position embeddings. During training, an additional image-stream encoder-decoder is collaboratively trained to provide supervision for P2SA features. At inference, the extra streams are discarded, and only the P2SA module is used and merged before the decoder, simplifying the process while preserving high performance. Extensive experimental results on several OLHTR benchmarks demonstrate the state-of-the-art (SOTA) performance, proving the effectiveness and robustness of our design.
Abstract:In practical sleep stage classification, a key challenge is the variability of EEG data across different subjects and environments. Differences in physiology, age, health status, and recording conditions can lead to domain shifts between data. These domain shifts often result in decreased model accuracy and reliability, particularly when the model is applied to new data with characteristics different from those it was originally trained on, which is a typical manifestation of negative transfer. To address this, we propose SelectiveFinetuning in this paper. Our method utilizes a pretrained Multi Resolution Convolutional Neural Network (MRCNN) to extract EEG features, capturing the distinctive characteristics of different sleep stages. To mitigate the effect of domain shifts, we introduce a domain aligning mechanism that employs Earth Mover Distance (EMD) to evaluate and select source domain data closely matching the target domain. By finetuning the model with selective source data, our SelectiveFinetuning enhances the model's performance on target domain that exhibits domain shifts compared to the data used for training. Experimental results show that our method outperforms existing baselines, offering greater robustness and adaptability in practical scenarios where data distributions are often unpredictable.
Abstract:Researches on leveraging big artificial intelligence model (BAIM) technology to drive the intelligent evolution of wireless networks are emerging. However, since the breakthrough in generalization brought about by BAIM techniques mainly occurs in natural language processing, there is still a lack of a clear technical roadmap on how to efficiently apply BAIM techniques to wireless systems with many additional peculiarities. To this end, this paper first reviews recent research works on BAIM for wireless and assesses the current research situation. Then, this paper analyzes and compares the differences between language intelligence and wireless intelligence on multiple levels, including scientific foundations, core usages, and technical details. It highlights the necessity and scientific significance of developing BAIM technology in a wireless-native way, as well as new issues that need to be considered in specific technical implementation. Finally, by synthesizing the evolutionary laws of language models with the particularities of wireless system, this paper provides several instructive methodologies for how to develop wireless-native BAIM.
Abstract:In this paper, we address the challenges in automatic sleep stage classification, particularly the high computational cost, inadequate modeling of bidirectional temporal dependencies, and class imbalance issues faced by Transformer-based models. To address these limitations, we propose BiT-MamSleep, a novel architecture that integrates the Triple-Resolution CNN (TRCNN) for efficient multi-scale feature extraction with the Bidirectional Mamba (BiMamba) mechanism, which models both short- and long-term temporal dependencies through bidirectional processing of EEG data. Additionally, BiT-MamSleep incorporates an Adaptive Feature Recalibration (AFR) module and a temporal enhancement block to dynamically refine feature importance, optimizing classification accuracy without increasing computational complexity. To further improve robustness, we apply optimization techniques such as Focal Loss and SMOTE to mitigate class imbalance. Extensive experiments on four public datasets demonstrate that BiT-MamSleep significantly outperforms state-of-the-art methods, particularly in handling long EEG sequences and addressing class imbalance, leading to more accurate and scalable sleep stage classification.
Abstract:Talking head generation intends to produce vivid and realistic talking head videos from a single portrait and speech audio clip. Although significant progress has been made in diffusion-based talking head generation, almost all methods rely on autoregressive strategies, which suffer from limited context utilization beyond the current generation step, error accumulation, and slower generation speed. To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive diffusion), a framework that enables all-at-once generation of dynamic-length video sequences. Specifically, it consists of two main components: (1) audio-driven holistic facial dynamics generation in the latent motion space, and (2) audio-driven head pose and blink generation. Extensive experiments demonstrate that our method generates authentic and vivid videos with precise lip motions, and natural pose/blink movements. Additionally, with a high generation speed, DAWN possesses strong extrapolation capabilities, ensuring the stable production of high-quality long videos. These results highlight the considerable promise and potential impact of DAWN in the field of talking head video generation. Furthermore, we hope that DAWN sparks further exploration of non-autoregressive approaches in diffusion models. Our code will be publicly at https://github.com/Hanbo-Cheng/DAWN-pytorch.