Abstract:Sleep staging is critical for assessing sleep quality and diagnosing disorders. Recent advancements in artificial intelligence have driven the development of automated sleep staging models, which still face two significant challenges. 1) Simultaneously extracting prominent temporal and spatial sleep features from multi-channel raw signals, including characteristic sleep waveforms and salient spatial brain networks. 2) Capturing the spatial-temporal coupling patterns essential for accurate sleep staging. To address these challenges, we propose a novel framework named ST-USleepNet, comprising a spatial-temporal graph construction module (ST) and a U-shaped sleep network (USleepNet). The ST module converts raw signals into a spatial-temporal graph to model spatial-temporal couplings. The USleepNet utilizes a U-shaped structure originally designed for image segmentation. Similar to how image segmentation isolates significant targets, when applied to both raw sleep signals and ST module-generated graph data, USleepNet segments these inputs to extract prominent temporal and spatial sleep features simultaneously. Testing on three datasets demonstrates that ST-USleepNet outperforms existing baselines, and model visualizations confirm its efficacy in extracting prominent sleep features and temporal-spatial coupling patterns across various sleep stages. The code is available at: https://github.com/Majy-Yuji/ST-USleepNet.git.
Abstract:Compared to other modalities, electroencephalogram (EEG) based emotion recognition can intuitively respond to emotional patterns in the human brain and, therefore, has become one of the most focused tasks in affective computing. The nature of emotions is a physiological and psychological state change in response to brain region connectivity, making emotion recognition focus more on the dependency between brain regions instead of specific brain regions. A significant trend is the application of graphs to encapsulate such dependency as dynamic functional connections between nodes across temporal and spatial dimensions. Concurrently, the neuroscientific underpinnings behind this dependency endow the application of graphs in this field with a distinctive significance. However, there is neither a comprehensive review nor a tutorial for constructing emotion-relevant graphs in EEG-based emotion recognition. In this paper, we present a comprehensive survey of these studies, delivering a systematic review of graph-related methods in this field from a methodological perspective. We propose a unified framework for graph applications in this field and categorize these methods on this basis. Finally, based on previous studies, we also present several open challenges and future directions in this field.
Abstract:Compared to other modalities, EEG-based emotion recognition can intuitively respond to the emotional patterns in the human brain and, therefore, has become one of the most concerning tasks in the brain-computer interfaces field. Since dependencies within brain regions are closely related to emotion, a significant trend is to develop Graph Neural Networks (GNNs) for EEG-based emotion recognition. However, brain region dependencies in emotional EEG have physiological bases that distinguish GNNs in this field from those in other time series fields. Besides, there is neither a comprehensive review nor guidance for constructing GNNs in EEG-based emotion recognition. In the survey, our categorization reveals the commonalities and differences of existing approaches under a unified framework of graph construction. We analyze and categorize methods from three stages in the framework to provide clear guidance on constructing GNNs in EEG-based emotion recognition. In addition, we discuss several open challenges and future directions, such as Temporal full-connected graph and Graph condensation.
Abstract:Drowsy driving has a crucial influence on driving safety, creating an urgent demand for driver drowsiness detection. Electroencephalogram (EEG) signal can accurately reflect the mental fatigue state and thus has been widely studied in drowsiness monitoring. However, the raw EEG data is inherently noisy and redundant, which is neglected by existing works that just use single-channel EEG data or full-head channel EEG data for model training, resulting in limited performance of driver drowsiness detection. In this paper, we are the first to propose an Interpretability-guided Channel Selection (ICS) framework for the driver drowsiness detection task. Specifically, we design a two-stage training strategy to progressively select the key contributing channels with the guidance of interpretability. We first train a teacher network in the first stage using full-head channel EEG data. Then we apply the class activation mapping (CAM) to the trained teacher model to highlight the high-contributing EEG channels and further propose a channel voting scheme to select the top N contributing EEG channels. Finally, we train a student network with the selected channels of EEG data in the second stage for driver drowsiness detection. Experiments are designed on a public dataset, and the results demonstrate that our method is highly applicable and can significantly improve the performance of cross-subject driver drowsiness detection.
Abstract:The close coupling of artificial intelligence (AI) and electroencephalography (EEG) has substantially advanced human-computer interaction (HCI) technologies in the AI era. Different from traditional EEG systems, the interpretability and robustness of AI-based EEG systems are becoming particularly crucial. The interpretability clarifies the inner working mechanisms of AI models and thus can gain the trust of users. The robustness reflects the AI's reliability against attacks and perturbations, which is essential for sensitive and fragile EEG signals. Thus the interpretability and robustness of AI in EEG systems have attracted increasing attention, and their research has achieved great progress recently. However, there is still no survey covering recent advances in this field. In this paper, we present the first comprehensive survey and summarize the interpretable and robust AI techniques for EEG systems. Specifically, we first propose a taxonomy of interpretability by characterizing it into three types: backpropagation, perturbation, and inherently interpretable methods. Then we classify the robustness mechanisms into four classes: noise and artifacts, human variability, data acquisition instability, and adversarial attacks. Finally, we identify several critical and unresolved challenges for interpretable and robust AI in EEG systems and further discuss their future directions.
Abstract:Sleep stage classification is essential for sleep assessment and disease diagnosis. Although previous attempts to classify sleep stages have achieved high classification performance, several challenges remain open: 1) How to effectively utilize time-varying spatial and temporal features from multi-channel brain signals remains challenging. Prior works have not been able to fully utilize the spatial topological information among brain regions. 2) Due to the many differences found in individual biological signals, how to overcome the differences of subjects and improve the generalization of deep neural networks is important. 3) Most deep learning methods ignore the interpretability of the model to the brain. To address the above challenges, we propose a multi-view spatial-temporal graph convolutional networks (MSTGCN) with domain generalization for sleep stage classification. Specifically, we construct two brain view graphs for MSTGCN based on the functional connectivity and physical distance proximity of the brain regions. The MSTGCN consists of graph convolutions for extracting spatial features and temporal convolutions for capturing the transition rules among sleep stages. In addition, attention mechanism is employed for capturing the most relevant spatial-temporal information for sleep stage classification. Finally, domain generalization and MSTGCN are integrated into a unified framework to extract subject-invariant sleep features. Experiments on two public datasets demonstrate that the proposed model outperforms the state-of-the-art baselines.
Abstract:The research on human emotion under multimedia stimulation based on physiological signals is an emerging field, and important progress has been achieved for emotion recognition based on multi-modal signals. However, it is challenging to make full use of the complementarity among spatial-spectral-temporal domain features for emotion recognition, as well as model the heterogeneity and correlation among multi-modal signals. In this paper, we propose a novel two-stream heterogeneous graph recurrent neural network, named HetEmotionNet, fusing multi-modal physiological signals for emotion recognition. Specifically, HetEmotionNet consists of the spatial-temporal stream and the spatial-spectral stream, which can fuse spatial-spectral-temporal domain features in a unified framework. Each stream is composed of the graph transformer network for modeling the heterogeneity, the graph convolutional network for modeling the correlation, and the gated recurrent unit for capturing the temporal domain or spectral domain dependency. Extensive experiments on two real-world datasets demonstrate that our proposed model achieves better performance than state-of-the-art baselines.
Abstract:Sleep staging is fundamental for sleep assessment and disease diagnosis. Although previous attempts to classify sleep stages have achieved high classification performance, several challenges remain open: 1) How to effectively extract salient waves in multimodal sleep data; 2) How to capture the multi-scale transition rules among sleep stages; 3) How to adaptively seize the key role of specific modality for sleep staging. To address these challenges, we propose SalientSleepNet, a multimodal salient wave detection network for sleep staging. Specifically, SalientSleepNet is a temporal fully convolutional network based on the $\rm U^2$-Net architecture that is originally proposed for salient object detection in computer vision. It is mainly composed of two independent $\rm U^2$-like streams to extract the salient features from multimodal data, respectively. Meanwhile, the multi-scale extraction module is designed to capture multi-scale transition rules among sleep stages. Besides, the multimodal attention module is proposed to adaptively capture valuable information from multimodal data for the specific sleep stage. Experiments on the two datasets demonstrate that SalientSleepNet outperforms the state-of-the-art baselines. It is worth noting that this model has the least amount of parameters compared with the existing deep neural network models.