Alert button
Picture for Mingxing Li

Mingxing Li

Alert button

Why is the winner the best?

Mar 30, 2023
Matthias Eisenmann, Annika Reinke, Vivienn Weru, Minu Dietlinde Tizabi, Fabian Isensee, Tim J. Adler, Sharib Ali, Vincent Andrearczyk, Marc Aubreville, Ujjwal Baid, Spyridon Bakas, Niranjan Balu, Sophia Bano, Jorge Bernal, Sebastian Bodenstedt, Alessandro Casella, Veronika Cheplygina, Marie Daum, Marleen de Bruijne, Adrien Depeursinge, Reuben Dorent, Jan Egger, David G. Ellis, Sandy Engelhardt, Melanie Ganz, Noha Ghatwary, Gabriel Girard, Patrick Godau, Anubha Gupta, Lasse Hansen, Kanako Harada, Mattias Heinrich, Nicholas Heller, Alessa Hering, Arnaud Huaulmé, Pierre Jannin, Ali Emre Kavur, Oldřich Kodym, Michal Kozubek, Jianning Li, Hongwei Li, Jun Ma, Carlos Martín-Isla, Bjoern Menze, Alison Noble, Valentin Oreiller, Nicolas Padoy, Sarthak Pati, Kelly Payette, Tim Rädsch, Jonathan Rafael-Patiño, Vivek Singh Bawa, Stefanie Speidel, Carole H. Sudre, Kimberlin van Wijnen, Martin Wagner, Donglai Wei, Amine Yamlahi, Moi Hoon Yap, Chun Yuan, Maximilian Zenk, Aneeq Zia, David Zimmerer, Dogu Baran Aydogan, Binod Bhattarai, Louise Bloch, Raphael Brüngel, Jihoon Cho, Chanyeol Choi, Qi Dou, Ivan Ezhov, Christoph M. Friedrich, Clifton Fuller, Rebati Raman Gaire, Adrian Galdran, Álvaro García Faura, Maria Grammatikopoulou, SeulGi Hong, Mostafa Jahanifar, Ikbeom Jang, Abdolrahim Kadkhodamohammadi, Inha Kang, Florian Kofler, Satoshi Kondo, Hugo Kuijf, Mingxing Li, Minh Huan Luu, Tomaž Martinčič, Pedro Morais, Mohamed A. Naser, Bruno Oliveira, David Owen, Subeen Pang, Jinah Park, Sung-Hong Park, Szymon Płotka, Elodie Puybareau, Nasir Rajpoot, Kanghyun Ryu, Numan Saeed, Adam Shephard, Pengcheng Shi, Dejan Štepec, Ronast Subedi, Guillaume Tochon, Helena R. Torres, Helene Urien, João L. Vilaça, Kareem Abdul Wahid, Haojie Wang, Jiacheng Wang, Liansheng Wang, Xiyue Wang, Benedikt Wiestler, Marek Wodzinski, Fangfang Xia, Juanying Xie, Zhiwei Xiong, Sen Yang, Yanwu Yang, Zixuan Zhao, Klaus Maier-Hein, Paul F. Jäger, Annette Kopp-Schneider, Lena Maier-Hein

Figure 1 for Why is the winner the best?
Figure 2 for Why is the winner the best?
Figure 3 for Why is the winner the best?
Figure 4 for Why is the winner the best?

International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multi-center study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and postprocessing (66%). The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.

* accepted to CVPR 2023 
Viaarxiv icon

Recurrent Dynamic Embedding for Video Object Segmentation

May 08, 2022
Mingxing Li, Li Hu, Zhiwei Xiong, Bang Zhang, Pan Pan, Dong Liu

Figure 1 for Recurrent Dynamic Embedding for Video Object Segmentation
Figure 2 for Recurrent Dynamic Embedding for Video Object Segmentation
Figure 3 for Recurrent Dynamic Embedding for Video Object Segmentation
Figure 4 for Recurrent Dynamic Embedding for Video Object Segmentation

Space-time memory (STM) based video object segmentation (VOS) networks usually keep increasing memory bank every several frames, which shows excellent performance. However, 1) the hardware cannot withstand the ever-increasing memory requirements as the video length increases. 2) Storing lots of information inevitably introduces lots of noise, which is not conducive to reading the most important information from the memory bank. In this paper, we propose a Recurrent Dynamic Embedding (RDE) to build a memory bank of constant size. Specifically, we explicitly generate and update RDE by the proposed Spatio-temporal Aggregation Module (SAM), which exploits the cue of historical information. To avoid error accumulation owing to the recurrent usage of SAM, we propose an unbiased guidance loss during the training stage, which makes SAM more robust in long videos. Moreover, the predicted masks in the memory bank are inaccurate due to the inaccurate network inference, which affects the segmentation of the query frame. To address this problem, we design a novel self-correction strategy so that the network can repair the embeddings of masks with different qualities in the memory bank. Extensive experiments show our method achieves the best tradeoff between performance and speed. Code is available at https://github.com/Limingxing00/RDE-VOS-CVPR2022.

* Accepted by CVPR 2022 
Viaarxiv icon

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters

Feb 03, 2022
Mingxing Li, Shenglong Zhou, Chang Chen, Yueyi Zhang, Dong Liu, Zhiwei Xiong

Figure 1 for Retinal Vessel Segmentation with Pixel-wise Adaptive Filters
Figure 2 for Retinal Vessel Segmentation with Pixel-wise Adaptive Filters
Figure 3 for Retinal Vessel Segmentation with Pixel-wise Adaptive Filters
Figure 4 for Retinal Vessel Segmentation with Pixel-wise Adaptive Filters

Accurate retinal vessel segmentation is challenging because of the complex texture of retinal vessels and low imaging contrast. Previous methods generally refine segmentation results by cascading multiple deep networks, which are time-consuming and inefficient. In this paper, we propose two novel methods to address these challenges. First, we devise a light-weight module, named multi-scale residual similarity gathering (MRSG), to generate pixel-wise adaptive filters (PA-Filters). Different from cascading multiple deep networks, only one PA-Filter layer can improve the segmentation results. Second, we introduce a response cue erasing (RCE) strategy to enhance the segmentation accuracy. Experimental results on the DRIVE, CHASE_DB1, and STARE datasets demonstrate that our proposed method outperforms state-of-the-art methods while maintaining a compact structure. Code is available at https://github.com/Limingxing00/Retinal-Vessel-Segmentation-ISBI20222.

* Accepted by ISBI 2022 
Viaarxiv icon

Advanced Deep Networks for 3D Mitochondria Instance Segmentation

Apr 16, 2021
Mingxing Li, Chang Chen, Xiaoyu Liu, Wei Huang, Yueyi Zhang, Zhiwei Xiong

Figure 1 for Advanced Deep Networks for 3D Mitochondria Instance Segmentation
Figure 2 for Advanced Deep Networks for 3D Mitochondria Instance Segmentation
Figure 3 for Advanced Deep Networks for 3D Mitochondria Instance Segmentation
Figure 4 for Advanced Deep Networks for 3D Mitochondria Instance Segmentation

Mitochondria instance segmentation from electron microscopy (EM) images has seen notable progress since the introduction of deep learning methods. In this paper, we propose two advanced deep networks, named Res-UNet-R and Res-UNet-H, for 3D mitochondria instance segmentation from Rat and Human samples. Specifically, we design a simple yet effective anisotropic convolution block and deploy a multi-scale training strategy, which together boost the segmentation performance. Moreover, we enhance the generalizability of the trained models on the test set by adding a denoising operation as pre-processing. In the Large-scale 3D Mitochondria Instance Segmentation Challenge, our team ranks the 1st on the leaderboard at the end of the testing phase. Code is available at https://github.com/Limingxing00/MitoEM2021-Challenge.

* 4 pages, 3 figures 
Viaarxiv icon