Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

PMIC: Improving Multi-Agent Reinforcement Learning with Progressive Mutual Information Collaboration


Mar 16, 2022
Pengyi Li, Hongyao Tang, Tianpei Yang, Xiaotian Hao, Tong Sang, Yan Zheng, Jianye Hao, Matthew E. Taylor, Zhen Wang

* A preliminary version has been accepted on the Cooperative AI Workshop at 35th Conference on Neural Information Processing Systems (NeurIPS 2021) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

API: Boosting Multi-Agent Reinforcement Learning via Agent-Permutation-Invariant Networks


Mar 10, 2022
Xiaotian Hao, Weixun Wang, Hangyu Mao, Yaodong Yang, Dong Li, Yan Zheng, Zhen Wang, Jianye Hao


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

SEIHAI: A Sample-efficient Hierarchical AI for the MineRL Competition


Nov 17, 2021
Hangyu Mao, Chao Wang, Xiaotian Hao, Yihuan Mao, Yiming Lu, Chengjie Wu, Jianye Hao, Dong Li, Pingzhong Tang

* The winner solution of NeurIPS 2020 MineRL competition (https://www.aicrowd.com/challenges/neurips-2020-minerl-competition/leaderboards). The paper has been accepted by DAI 2021 (the third International Conference on Distributed Artificial Intelligence) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Towards robust and domain agnostic reinforcement learning competitions


Jun 07, 2021
William Hebgen Guss, Stephanie Milani, Nicholay Topin, Brandon Houghton, Sharada Mohanty, Andrew Melnik, Augustin Harter, Benoit Buschmaas, Bjarne Jaster, Christoph Berganski, Dennis Heitkamp, Marko Henning, Helge Ritter, Chengjie Wu, Xiaotian Hao, Yiming Lu, Hangyu Mao, Yihuan Mao, Chao Wang, Michal Opanowicz, Anssi Kanervisto, Yanick Schraner, Christian Scheller, Xiren Zhou, Lu Liu, Daichi Nishio, Toi Tsuneda, Karolis Ramanauskas, Gabija Juceviciute

* 20 pages, several figures, published PMLR 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential Advertising


Jun 29, 2020
Xiaotian Hao, Zhaoqing Peng, Yi Ma, Guan Wang, Junqi Jin, Jianye Hao, Shan Chen, Rongquan Bai, Mingzhou Xie, Miao Xu, Zhenzhe Zheng, Chuan Yu, Han Li, Jian Xu, Kun Gai

* accepted by ICML 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning to Accelerate Heuristic Searching for Large-Scale Maximum Weighted b-Matching Problems in Online Advertising


May 12, 2020
Xiaotian Hao, Junqi Jin, Jianye Hao, Jin Li, Weixun Wang, Yi Ma, Zhenzhe Zheng, Han Li, Jian Xu, Kun Gai

* accepted by IJCAI 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

From Few to More: Large-scale Dynamic Multiagent Curriculum Learning


Sep 06, 2019
Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang Gao


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Action Semantics Network: Considering the Effects of Actions in Multiagent Systems


Jul 26, 2019
Weixun Wang, Tianpei Yang Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang Gao


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email