Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Use-Case-Grounded Simulations for Explanation Evaluation


Jun 05, 2022
Valerie Chen, Nari Johnson, Nicholay Topin, Gregory Plumb, Ameet Talwalkar

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent Reinforcement Learning


May 25, 2022
Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Zheyuan Ryan Shi, Charles Kamhoua, Evangelos E. Papalexakis, Fei Fang

Add code

* 25 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

MineRL Diamond 2021 Competition: Overview, Results, and Lessons Learned


Feb 17, 2022
Anssi Kanervisto, Stephanie Milani, Karolis Ramanauskas, Nicholay Topin, Zichuan Lin, Junyou Li, Jianing Shi, Deheng Ye, Qiang Fu, Wei Yang, Weijun Hong, Zhongyue Huang, Haicheng Chen, Guangjun Zeng, Yue Lin, Vincent Micheli, Eloi Alonso, François Fleuret, Alexander Nikulin, Yury Belousov, Oleg Svidchenko, Aleksei Shpilman

Add code

* Under review for PMLR volume on NeurIPS 2021 competitions 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A Survey of Explainable Reinforcement Learning


Feb 17, 2022
Stephanie Milani, Nicholay Topin, Manuela Veloso, Fei Fang

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

The MineRL BASALT Competition on Learning from Human Feedback


Jul 05, 2021
Rohin Shah, Cody Wild, Steven H. Wang, Neel Alex, Brandon Houghton, William Guss, Sharada Mohanty, Anssi Kanervisto, Stephanie Milani, Nicholay Topin, Pieter Abbeel, Stuart Russell, Anca Dragan

Add code

* NeurIPS 2021 Competition Track 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Towards robust and domain agnostic reinforcement learning competitions


Jun 07, 2021
William Hebgen Guss, Stephanie Milani, Nicholay Topin, Brandon Houghton, Sharada Mohanty, Andrew Melnik, Augustin Harter, Benoit Buschmaas, Bjarne Jaster, Christoph Berganski, Dennis Heitkamp, Marko Henning, Helge Ritter, Chengjie Wu, Xiaotian Hao, Yiming Lu, Hangyu Mao, Yihuan Mao, Chao Wang, Michal Opanowicz, Anssi Kanervisto, Yanick Schraner, Christian Scheller, Xiren Zhou, Lu Liu, Daichi Nishio, Toi Tsuneda, Karolis Ramanauskas, Gabija Juceviciute

Add code

* 20 pages, several figures, published PMLR 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Iterative Bounding MDPs: Learning Interpretable Policies via Non-Interpretable Methods


Feb 25, 2021
Nicholay Topin, Stephanie Milani, Fei Fang, Manuela Veloso

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

The MineRL 2020 Competition on Sample Efficient Reinforcement Learning using Human Priors


Jan 26, 2021
William H. Guss, Mario Ynocente Castro, Sam Devlin, Brandon Houghton, Noboru Sean Kuno, Crissman Loomis, Stephanie Milani, Sharada Mohanty, Keisuke Nakata, Ruslan Salakhutdinov, John Schulman, Shinya Shiroshita, Nicholay Topin, Avinash Ummadisingu, Oriol Vinyals

Add code

* 37 pages, initial submission, accepted at NeurIPS. arXiv admin note: substantial text overlap with arXiv:1904.10079 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Guaranteeing Reproducibility in Deep Learning Competitions


May 12, 2020
Brandon Houghton, Stephanie Milani, Nicholay Topin, William Guss, Katja Hofmann, Diego Perez-Liebana, Manuela Veloso, Ruslan Salakhutdinov

Add code

* Accepted as a poster presentation to the 2019 NeruIPS Challenges in Machine Learning workshop (CiML) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Retrospective Analysis of the 2019 MineRL Competition on Sample Efficient Reinforcement Learning


Mar 27, 2020
Stephanie Milani, Nicholay Topin, Brandon Houghton, William H. Guss, Sharada P. Mohanty, Keisuke Nakata, Oriol Vinyals, Noboru Sean Kuno

Add code

* 10 pages, 2 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>